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Abstract

The Ewald method is applied to accelerate the evaluation of the Green’s function (GF) of an infinite equispaced linear
array of point sources with linear phasing. Only a few terms are needed to evaluate Ewald sums, which are cast in terms of
error functions and exponential integrals, to high accuracy. It is shown analytically that the choice of the standard ‘‘opti-
mal’’ Ewald splitting parameter E0 causes overflow errors at high frequencies (period large compared to the wavelength),
and convergence rates are analyzed. A recipe for selecting the Ewald splitting parameter is provided.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In applying numerical full wave methods like the Method of Moments (MoM) or Boundary Integral Equa-
tions (BIE) to periodic structures made of conducting or dielectric electromagnetic scatterers, fast and accu-
rate means for evaluating the periodic Green’s function (GF) are often needed, in both microwave and optical
frequencies where also other techniques could benefit by the fast evaluation of the periodic GF. The GF can
also be used directly in analogous acoustic problems.

Among various techniques to accelerate computation of the periodic GF is the Ewald method, originally
developed by Ewald in [1] to efficiently calculate the electrostatic scalar potential of a 3D periodic distribution
of point charges. The method has been applied to a large variety of problems ranging from solid state physics
and chemistry to engineering.
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In the following we describe the application of the method to the electrodynamic or acoustic problems such
as the solution of the Helmholtz equation with periodic boundary conditions. We list here the Ewald methods
that have been previously developed, and identify our own contribution.

Jordan et al. extended the Ewald method to the case of the free space GF for three-dimensional (3D) prob-
lems with 2D periodicity (i.e., a planar array of point sources) in [2]. Its application in evaluating GFs for mul-
tilayered media is treated in [3–6]. The Ewald method is extended in [7–9] to 2D problems with 1D periodicity
(i.e., a planar array of line sources). An analogous treatment of the GF for an array of line sources is reported
in [10] where a more general view is also addressed, as well as in [11] where Schlömilch series that may arise in
diffraction theory are efficiently evaluated. We also point out that in [8] a comparison is made between various
representations of the periodic GF concluding that the Ewald method is one of the most advantageous. For a
mathematical review of the Ewald method in general, see [12]. For the case of a planar 2D-periodic array of
point sources, the critical distance from the array plane beyond which the Ewald method is not advantageous
compared to the standard spectral grating lobe series is analyzed in [13].

The evaluation of the GF for a rectangular cavity using the Ewald method is reported in [14], and its dyadic
form in [15]. An application of the Ewald representation to hybrid methods involving a boundary integral
equation and finite element method, for periodic structures, is given in [16]. In [17] the Ewald method is com-
bined with another very effective method to analyze scattering by periodically etched layered conducting sur-
faces such as are commonly used for frequency selective surfaces.

Here we accelerate for the first time with the Ewald method the GF pertaining to a linear array of point
sources (i.e., a 3D problem with 1D periodicity). The formula representations obtained in the above men-
tioned studies, i.e., the GF for geometries such as the 2D-periodic array of point sources [2], and the 1D-peri-
odic array of line sources [7–10], cannot be applied to this new geometry. The standard purely spectral sum
representation for the GF cannot be used for this new particular configuration because it diverges when
the observation point lies on the axis of the linear array, thus further proving the utility of the Ewald method,
which exhibits a Gaussian convergence. A numerical analysis of the convergence rate is also provided, sup-
ported by analytical considerations. As previously noted in [18], at high frequencies such that the wavelength
is somewhat smaller than the period, computing the Ewald series using the optimal splitting parameter E0 (see
[2]) may yield inaccurate results due to the finiteness of machine precision. In [18] it is suggested that such
numerical inaccuracies may be improved by increasing the value of the splitting parameter E as frequency
increases, but no guidelines for choosing the parameter are given. Here we present an algorithm for choosing
the Ewald splitting parameter E that extends the efficiency of the method when the wavelength is somewhat
smaller than the periodicity. The proposed algorithm is efficiently applied to periodic structures when the
observation point is near the axis of the linear array of point sources.
2. Statement of the problem

For several numerical methods such as MoM or BIE applied to periodic structures with period d along z, it
may be convenient to find the scalar potential radiated by an infinite linear array of point sources located at
r0n ¼ nd ẑ, where bold symbols define vector quantities, the caretˆ defines unit vectors, and n = 0, ± 1, ± 2, . . .
The point sources may be excited with a linear phase progression e�jkz0z, where kz0 is the longitudinal wave-
number, that may originate by an impinging plane wave (impressed wavenumber) or by generators within
each cell with a linear phase progression. An ejxt time dependence, with j ¼

ffiffiffiffiffiffiffi
�1
p

, is assumed and suppressed
throughout this paper. If one adopts an e�ixt time dependence, with i ¼

ffiffiffiffiffiffiffi
�1
p

, all intermediate and final for-
mula here derived apply as well after complex conjugation.

The GF for such a problem periodic along z, with period d, is given by the outgoing solution of the Helm-
holtz equation $2G(r, r 0) + k2G(r,r 0) = � dp(r 0), where the periodic (along z) forcing term dp(r 0) is written as
dpðr0Þ ¼

P1
n¼0dðx0Þdðy 0Þdðz0 � ndÞe�jkz0nd . The GF solution of the Helmholtz equation may be represented as

the spatial sum of spherical waves
Gðr; r0Þ ¼
X1

n¼�1
e�jkz0nd e�jkRn

4pRn
ð1Þ
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where Rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðz� ndÞ2

q
is the distance between the observation point r � qq̂þ zẑ and the nth source

point r0n ¼ nd ẑ (see Fig. 1). Because of the symmetry of the problem, we use cylindrical coordinates and denote
an arbitrary point as r = (q,z). Terms in the series (1) are of order n�1exp(�jnh), where h = (kz0 + k)d for large
positive n, and h = (kz0 � k)d for large negative n, so that the series is extremely slowly convergent. The series
diverges for h = 2mp, where m is an arbitrary integer, because the spherical contributions arising from at least
one side of the linear array would all add in phase. In other words, one of the Floquet waves (see what follows)
is propagating at grazing.

An alternative spectral series representation of this GF may be obtained by applying to (1) the infinite Pois-
son sum formula [19, p. 117],

P1
n¼�1f ðndÞ ¼ 1

d

P1
q¼�1

~f ð2pq=dÞ, where
Fig. 1.
distanc
f ðndÞ ¼ e�jkz0nd e�jkRn

4pRn
ð2Þ
and
~f
2pq

d

� �
¼
Z 1

�1
e�jð2pq

d Þz
0
f ðz0Þdz0 ð3Þ
is its Fourier transform. This yields the GF representation as a sum of cylindrical harmonics,
Gðr; r0Þ ¼ 1

4jd

X1
q¼�1

e�jkzqzH ð2Þ0 ðkqqqÞ ð4Þ
but it is also slowly convergent. Here H ð2Þ0 is the Hankel function of zeroth order and second kind,
kzq ¼ kz0 þ
2pq

d
ð5Þ
is the qth Floquet wavenumber along z, and
kqq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

zq

q
ð6Þ
is the qth transverse Floquet wavenumber, along q. Convergence of the field far away from the linear array
requires that Im kqq < 0, as can be inferred from the large argument expansion of the Hankel function. For
a real excitation wavenumber kz0 and for radiation in a lossless medium (real k), q-harmonics such that
kqq > 0, for kzq < k, index radially propagating Floquet waves, while when kqq ¼ �j½k2

zq � k2�1=2, for kzq > k,
q indexes radially attenuating Floquet waves.

Note that the expression (4) has the important drawback that it cannot be used when the observation point
lies on the line of the array, namely when q = 0, a situation that often happens in the MoM or BIE. Here we
provide a representation of the GF (1) or (4) as a rapidly converging series, that can be evaluated also when
q = 0.

3. The Ewald Green’s function transformation

Following [2] the GF for a single source is represented as
z
r'= nd(0, )

Rn
d

n=0 n=1

r=( ),z

Physical configuration and coordinates for a planar periodic array of point sources with interelement spacing d along z. Rn is the
e between observation point r ” (q,z) and the nth source element r0n � ð0; ndÞ.



Fig. 2.
in (8) a
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e�jkRn

4pRn
¼ 1

2p
ffiffiffi
p
p

Z 1

0

e�R2
ns2þ k2

4s2 ds; ð7Þ
where the integration path in the complex space is shown in Fig. 2. For simplicity the homogeneous medium is
assumed to have small losses and the complex ambient wavenumber k = kr + jki has ki < 0. The particular
shape of the integration path is dictated by constraints for the integrability of the integrand of (7), which is
explained as follows. It is useful to write the ambient wavenumber in polar coordinates k ¼ jkjej/k , with
/k = arctan(ki/kr) < 0, and s = sr + jsi = jsjexp(j/s) with /s = arctan(si/sr). Indeed, convergence of (7) is en-
sured by requiring that Re[k2/s2] < 0 for s! 0, and Re½R2

ns2� > 0 for s!1, i.e.,
3

4
pþ /k P /s P

p
4
þ /k for s! 0 ð8Þ

p
4
> /s > �

p
4

for s!1 ð9Þ
which are satisfied by the path in Fig. 2. The Ewald method is obtained by splitting the integral in (7) into two
parts,

R1
0 ¼ ð

R E

0 þ
R1
E
Þ, which also determines the splitting
Gðr; r0Þ ¼ Gspectralðr; r0Þ þ Gspatialðr; r0Þ ð10Þ

Gspectralðr; r0Þ ¼
1

2p
ffiffiffi
p
p

X1
n¼�1

e�jkz0nd

Z E

0

e�Rns2þ k2

4s2 ds ð11Þ

Gspatialðr; r0Þ ¼
1

2p
ffiffiffi
p
p

X1
n¼�1

e�jkz0nd

Z 1

E

e�R2
ns2þ k2

4s2 ds: ð12Þ
The spatial term Gspatial exhibits a Gaussian exponential convergence in n as can be inferred by noticing that
ReðsÞ > E on the complex integration path and for large n the integral in (12) behaves like
1ffiffi
p
p
R1
E

e�n2d2s2
ds ¼ ð2ndÞ�1erfcðnEdÞ, where
erfcðzÞ ¼ 2ffiffiffi
p
p

Z 1

z
e�t2 dt ð13Þ
is the complementary error function. For large argument it is approximated by erfcðzÞ � e�z2
=ð

ffiffiffi
p
p

zÞ, which
highlights the Gaussian n-convergence of (12). The spectral term (11) instead is slowly converging as 1/n, since
the original series (1) converges as 1/n, and requires the use of the Poisson transformation to accelerate its
convergence.

3.1. The spectral part of the Green’s function

To accelerate the spectral part (11) of the GF in (10) we first apply the Poisson’s sum formula, (cf., discus-
sion before (2)), with
f ðndÞ ¼ e�jkz0nd

Z E

0

e�½q
2þðz�ndÞ2�s2þ k2

4s2 ds: ð14Þ
Im s

Re s
0

k
k

Path of integration. Expressing k = jkjexp(j/k) (Imk 6 0, thus /k < 0), and s = jsjexp(j/s), the region of convergence of (7) is given
nd (9).
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The evaluation of the Fourier transform ~f ð2pq=dÞ, defined in (3), is carried out by first changing the order
of integration, which is possible since Re(s2) > 0 on the integration path shown in Fig. 2. More details on these
mathematical steps are in [9, Section IV-A] where an analogous problem is treated. Then, the change of var-
iable (z 0, s)! (u, s), with u = (z � z 0)s, after evaluation of the resulting u-integral, leads to
~f
2pq

d

� �
¼

ffiffiffi
p
p

e�jkzqz

Z E

0

e�q2s2þ
k2
qq

4s2
ds
s
: ð15Þ
Note that Reðk2
qqÞ, with k2

qq ¼ k2 � k2
zq, is negative for large q resulting in evanescent Floquet modes, hence

the above integral is exponentially converging for large q. Let u ¼ 1
4s2, with ds

s ¼ � 1
2

du
u , so that the above inte-

gral is rewritten as
~f
2pq

d

� �
¼

ffiffiffi
p
p

2
e�jkzqz

Z 1

1
4E2

e�
q2

4uþk2
qqu du

u
ð16Þ
where the mapped integration path goes to infinity in the region between p
2

and 3p
2

for real kqq (propagating
modes), and in the region between � p

2
and p

2
for imaginary kqq (evanescent modes). The same argument applies

when small ambient losses are present, while a deeper analysis is required for complex propagation constants kzq.
Next, following a procedure analogous to [7], [9, Section IV-B], we utilize the Taylor expansion

e�q2=ð4uÞ ¼
P1

p¼0ð�1Þpðq=2Þ2p
=ðp!upÞ. After using the change of variable w ¼ 4E2u, an integration of the series

term by term leads to
~f
2pq

d

� �
¼

ffiffiffi
p
p

2
e�jkzqz

X1
p¼0

ð�1Þp

p!
qEð Þ2pEpþ1

�k2
qq

4E2

 !
ð17Þ
in which Ep(x) is the pth order exponential integral defined by [20, p. 228]
E1ðxÞ ¼
Z 1

x

e�t

t
dt; jarg xj < p ð18Þ
and by the recurrence relation [20, p. 229]
Epþ1ðxÞ ¼
1

p
½e�x � xEpðxÞ�; p ¼ 1; 2; 3; . . . ð19Þ
The path of integration in (18) should exclude the origin and not cross the negative real axis [20, p. 229]. For
evanescent waves, �k2

qq > 0 and one can also use the definition EpðxÞ ¼
R1

1
e�xtt�p dt, valid for Re x > 0.

Substituting (17) into the Poisson transform of the original expression (11) leads to
Gspectralðr; r0Þ ¼
1

4pd

X1
q¼�1

e�jkzqz
X1
p¼0

ð�1Þp

p!
ðqEÞ2pEpþ1

�k2
qq

4E2

 !
: ð20Þ
The exponential integral E1(x) may be evaluated using the algorithm of [20, Section 5.1.53] for 0 6 x 6 1,
or ([20, Section 5.1.56]) for 1 6 x <1. Though a double series, expression (20) is rapidly convergent.
Indeed, only a handful of q terms and around ten p terms are necessary to reach a good accuracy, as shown
in Section 5.
3.1.1. Choice of the branch

The exponential integral (18) has a branch cut along the negative real axis. Note that in absence of ambient
losses, and for a real phasing wavenumber kz0 along the array, all propagating Floquet waves have
k2

qq ¼ k2 � k2
zq > 0 and thus the argument of the exponential integral in (20) is negative real, resulting in an

ambiguous branch condition.
To resolve the ambiguity we imagine small ambient losses such that Imð�k2

qqÞ > 0 and therefore the branch
can be chosen automatically and one can use (18) directly. Though the assumption of losses is useful for the
branch determination, in lossless media one may prefer to evaluate Ep+1(x) obtained using the formula
E1(�x + j0+) = � Ei(x) � jp, [20, p. 228], with
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EiðxÞ ¼ �P
Z 1

�x

e�t

t
dt; x > 0; ð21Þ
where P denotes principal-value integration. For small argument the exponential integral Ei can be evaluated
as
EiðxÞ ¼ cþ ln xþ
X1
n¼1

xn

,
ðnn!Þ
for x > 0, where c � 0.57721566 is the Euler constant. Note that once E1(�x + j0+) is obtained,
Ep+1(�x + j0+) follows from (19).

3.2. The spatial part of the Green’s function

The spatial part of the GF in (12) already exhibits Gaussian convergence; here we reexpress it in terms of
complementary error functions. Consider a generic n-term of the spatial series in (12)
In ¼
Z 1

E

e�R2
ns2þ k2

4s2 ds ¼ ejkRn

Z 1

E

e� Rnsþj k
2s½ �2 ds ð22Þ
With the change of variable of u = Rns + jk/(2s), or s ¼ ðuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � j2kRn

p
Þ=ð2RnÞ, (22) is transformed to
In ¼
ejkRn

2Rn

Z 1

RnEþj k
2E

e�u2

duþ ejkRn

2Rn

Z 1

RnEþj k
2E

e�u2 uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � j2kRn

p ð23Þ
Now, the second integral is transformed by using the change of variable w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � j2kRn

p
, with lower end

point w2
l ¼ ðRnEþ j k

2E
Þ2 � j2kRn ¼ ðRnE� j k

2E
Þ2, and u2 = w2 + j2kRn, yielding
In ¼
ejkRn

2Rn

Z 1

RnEþj k
2E

e�u2

duþ e�jkRn

2Rn

Z 1

RnE�j k
2E

e�w2

dw ð24Þ
Inserting this result into (12) leads finally to
Gspatialðr; r0Þ ¼
1

8p

X1
n¼�1

e�jkz0nd

Rn
ejkRn erfc RnEþ j

k
2E

� ��
þe�jkRn erfc RnE� j

k
2E

� ��
ð25Þ
where the complementary error function erfc is defined in (13). For its fast evaluation, see [21].

3.2.1. The singular spatial contribution

The GF often appears convolved with induced or equivalent currents within a reference cell of the periodic
structure (which we take to be the n = 0 cell), and special treatment is needed for the case when the observa-
tion point r is close to the source point in the cell, resulting in a vanishing R0. From the GF representation in
(1) we know that when R0 � 0, one has G(r, r 0) � 1/(4pR0). This singular term is fully contained in the n = 0
term in the spatial sum in (25), since erfcðRnE� j k

2
EÞ � erfcð�j k

2
EÞ, and erfcðþj k

2
EÞ þ erfcð�j k

2
EÞ ¼ 2 [20].
4. Asymptotic convergence of series in Gspectral and Gspatial

The convergence properties of Gspectral and Gspatial, in (20) and (25), respectively, are analyzed here. First we
derive the so called ‘‘optimum’’ Ewald splitting parameter E0, and then we show that in some specific impor-
tant cases this choice leads to a high-frequency breakdown.

4.1. The optimum Ewald splitting parameter E0

In the spectral sum Gspectral, for large q, we can approximate kzq � 2pjqj/d and kqq � �j(2pjqj/d). By using
the large argument asymptotic expansion for the exponential integral Ep+1(z) � e�z/z, the qth term of the ser-
ies in (20) is asymptotically approximated for large q as
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� e�j2pqz=d e�ðqEÞ
2

4pd
e�ð

pq
EdÞ

2

ðpq
Ed Þ

2
ð26Þ
which exhibits Gaussian q-convergence. In the spatial sum Gspatial, for large n, we can approximate Rn � jnjd,
and the two error functions in Gspatial are approximated by their asymptotic expansion for large argument as
in the text after (13). Thus, the nth term of the series in (25) is asymptotically approximated for large n as
� e�jkz0nd Ee
k

2Eð Þ
2

4p3=2

e�ðnEdÞ2

ðnEdÞ2
ð27Þ
which exhibits Gaussian n-convergence. When truncating the two series in (20) and (25) as
PQ

q¼�Q and
PN

n¼�N ,
respectively, resulting in a total number of terms 2Q + 1 and 2N + 1, the optimum Ewald splitting parameter
E0, minimizes the total number (2Q + 1) + (2N + 1) of necessary q, n-terms.

The total number of terms needed is determined by observing that to obtain roughly the same number of sig-
nificant digits of accuracy in each sum in (20) and (25), the asymptotic approximation of their terms in (26) and
(27), respectively, must have the same exponential factor e�r2

, and thus we set ðQpÞ2=ðEdÞ2 ¼ ðNEdÞ2 � r2. The
minimum number of terms needed to achieve this accuracy is thus M tot ¼ 2r½1=ðEdÞ þ Ed=p� þ 2. The optimum
E0 parameter is obtained by imposing oM tot=oE ¼ 0, which leads to
E0 ¼
ffiffiffi
p
p

d
ð28Þ
We note that the choice of the optimum splitting parameter E ¼ E0 results in both series, Gspectral in (20) and
Gspatial in (25), converging asymptotically with identical Gaussian convergence rates, �exp(�pq2) and
�exp(�pn2), respectively.

4.2. The high-frequency breakdown of the Ewald representation

At high frequencies (large k), some of the leading terms in the Ewald representation in both series (20) and
(25) can become very large but nearly cancelling, not only causing loss of accuracy but also leading to overflow
errors. In particular, exponentially large terms arise from the low-q terms in the spectral sum Gspectral in (20)
that correspond to radially propagating Floquet waves (those with real kqq). Without loss of generality we sup-
pose that the array is phased with a real kz0 and that it is in a lossless free space. The q = 0 term has the largest
value of kqq, as is often the case. The exponential integrals related to the q = 0 term can be approximated as
Epþ1

�k2
q0

4E2

 !
� 4E2

k2
q0

e
k2
q0

4E2 ð29Þ
which causes numerical instability when the argument k2
q0=ð4E2Þ is very large. These large numbers tend to

cancel a large number arising from the spatial Gspatial in (25), with a resulting loss of significant figures. The
largest counterpart terms in the spatial sum Gspatial in (25) is provided by the two erfc functions in (25) that
asymptotically behave like
ejkRn erfc RnEþ j
k

2E

� �
þ e�jkRn erfc RnE� j

k
2E

� �� �
� 1ffiffiffi

p
p ek2=ð4E2Þ�R2

nE
2 2RnE

ðRnEÞ2 þ k2

ð4E2Þ

� �
2
4

3
5 ð30Þ
The appropriate index n in (30) is that which minimizes Rn (often n = 0) because the large growth ek2=ð4E2Þ is
compensated by e�R2

nE
2

when Rn is large. It should be noticed that this numerical instability arises from the
Ewald splitting and is not physical. The sum of the large numbers arising from the spectral and spatial splitting
of course analytically leads to the correct results, but numerically may result in loss of accuracy or overflow.
Thus at high frequencies, we have a loss of precision due to cancellation of large numbers when summing
Gspectral and Gspatial in (10). The cancellation problem may be avoided by requiring that k2

q0=ð4E2Þ < H 2 in
the spectral sum, and that k2=ð4E2Þ � R2

0E
2 < H 2 in the spatial sum, where H2 is the maximum exponent per-

mitted. This leads to
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E > Espectral �
kq0

2H
6

k
2H
� EHF ð31Þ

E > Espatial �
Hffiffiffi
2
p

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2R2

0

H 4

s
� 1

0
@

1
A

1=2

< EHF ð32Þ
Under the approximations kz0� k and kR0� H2 we have Espectral � EHF � Espatial. The fact that Espectral and
Espatial have different expressions suggests that an algorithm where these large numbers are numerically stabi-
lized a priori (mixing spectral and spatial terms) is not straightforward, and is considered beyond the scope of
this work.

If one desires to use the optimum parameter E0 in (28) (that minimizes the number of terms) with the con-
straint that the largest computed values in Gspectral and Gspatial are smaller than eH2

that may cause loss of accu-
racy, one should also impose that E0 P EHF. For example, if we require H2 = 6 we need
E > EHF � k=4:9 � 1:28=k. In other words, for H2 = 6, the choice of the optimum parameter E ¼ E0 is a good
choice if d < 1.38k.

Even though the exponential growth is limited by the choice E > EHF, in order to have a computation-
ally efficient algorithm we also require the p-sum in (20) to be rapidly convergent. From (p � 1)p�1 Ep(x) <
Ep+1(x) < Ep(x) [20, Eq. (5.1.17), p. 229] we infer that the exponential integral does not decay significantly with
p, and indeed, except for x� p and large p, Ep(x) � e�x/p [20, Eq. (5.1.19), p. 229]. Thus convergence of (20)
relies on having ðqEÞ2p

=ðp þ 1Þ! negligible for p P P, i.e., ðqEÞ2P
=ðP þ 1Þ! < �, with � the desired error and P

the number of p-terms necessary to achieve convergence (typically 10–15). This implies that
E < ETaylor �
�ðP þ 1Þ!½ �

1
2P

q
ð33Þ
For example, if we require � = 10�6, and P = 15, we have E < ETaylor � 1:75=q that has to be considered
jointly with (28). In other words, the optimum parameter in (28) can be used if E0 < ETaylor which is, for
the numerical example just given, equivalent to imposing that the Ewald sum be used up to
q < 1:75d=

ffiffiffi
p
p
� d. Thus for high frequencies, or equivalently for large interelement spacings d > k, the con-

straint (32) forces a choice of E other than ‘‘optimum’’ (28). We therefore suggest choosing
E ¼ max E0;EHFf g ¼ max

ffiffiffi
p
p

d
;

k
2H

	 

ð34Þ
for the E parameter in (20) and (25) whose expressions can be used for the GF evaluation up to a distance q
determined by (33).

When the frequency is sufficiently high that the Ewald parameter has to be chosen as E ¼ EHF, one should
use the Ewald algorithm under the condition EHF < ETaylor, which is equivalent to q/k < [�(P + 1)!]1/2PH/p that
may further restrict the radial distance q where the Ewald sum is accurate.

5. Numerical results: convergence

Various examples describe the convergence behavior of the two sums (20) and (25), for Gspectral and Gspatial,
respectively, of the Ewald splitting (10). In all cases that follow, the linear array is phased, i.e., kz0 = 0.1k and
the n = 0 point source is at (q 0,z 0) = (0, 0).

In Fig. 3 we analyze the convergence rate of the Ewald sums using the percent relative error defined as
Err ¼ jGexact � GEwaldj=jGexactj 	 100 ð35Þ

where Gexact is the GF reference solution evaluated via its spectral counterpart (4) with a sufficiently large
number of terms to achieve accuracy up to eight decimal digits, and GEwald is the same GF evaluated using
the Ewald splitting (10) with (20) and (25). For the case q = 0, the spectral series (4) cannot be used, and
the reference solution is evaluated with 108 terms of the spatial series (1). The percentage relative error is plot-
ted versus summation limit parameters ±Q and ±N employed in sums (20) and (25), respectively (in partic-
ular, �Q 6 q 6 Q, and �N 6 n 6 N), resulting in a total number of terms of 2P + 1 and 2N + 1. The three
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Fig. 3. Convergence of the Ewald sums in (10) with (20) and (25) evaluated at three observation points with q = 0, 0.01d, 0.1d and
z = 0.1d. Percentage relative error versus number of terms N (Q = N) in the sums for two cases with period d = 0.05k and d = 0.5k. Curves
for q = 0 and q = 0.01d are superimposed.
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curves are related to three observation points at q = 0, 0.01d, 0.1d, all with z = 0.1d, where d is the period,
which is set to d = 0.05 k and d = 0.5k, with k = 2p/k the free space wavelength. The Ewald splitting param-
eter is chosen as E ¼ E0 given in (28). A large total number P = 20 of p-terms in (20) has been used because we
emphasize here convergence issues related only to N and Q.

Fig. 3 shows that just a few terms, Q = 1 and N = 1, provide six digits of accuracy. The relative error can-
not be further decreased by augmenting the number of terms Q, N in Gspectral, Gspatial because of the accuracy
limits of the numerical subroutines that evaluate the error functions in Gspatial and the exponential integral
E1(x) in Gspectral (see [21] for erfc(x), and [20, Sections 5.1.53 and 5.1.56] for E1(x)). Note that in both cases
in Fig. 3 the period d is smaller than the wavelength, and that accepting exponential factors of the order of
eH2

with H2 = 9.6, i.e., with roughly six digits of accuracy, implies EHF ¼ k=6:2 ¼ 1:01=k. According to
(28), for d = 0.05k and d = 0.5k, the optimal Ewald parameter is E0 ¼ 35:4=k and E0 ¼ 3:54=k, respectively,
and thus in both cases we have E0 > EHF justifying the use of the optimum Ewald parameter E0.

To gain an idea of the exceptional convergence rate of the Ewald representation, independent of the accu-
racy error of the evaluation of the special functions E1(x) and erfc(x), Fig. 4 shows the rate of convergence of
the two individual series Gspectral and Gspatial in (20) and (25), respectively, evaluated at the location
r = (q,z) = (0.1,0.1)d (we have checked that the case with z = 0.1d would lead to analogous results). The rel-
ative error is defined as
Fig. 4.
Errspectral;spatial ¼
jGEwald;exact

spectral;spatial � GEwald;P ;M
spectral;spatialj

jGEwald;exact
spectral;spatialj

	 100 ð36Þ
where GEwald;exact
spectral;spatial is either Gspectral or Gspatial evaluated with a sufficient number of terms to achieve high

numerical accuracy. The error is plotted versus the summation limit parameters ±Q and ±N employed in
the sums in Gspectral and Gspatial, respectively. The array is the same as that in Fig. 3(b), i.e., d = 0.5k. The con-
vergence rate is shown for three different choices of the Ewald splitting parameter E. Note that the optimum
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Convergence of the two individual series Gspectral and Gspatial in (20) and (25) for various choices of the splitting Ewald parameter E.
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parameter E ¼ E0 leads to the same convergence rate for both Gspectral and in Gspatial (Fig. 4(b)), and the two
series need the same number of terms to achieve the same accuracy. It is remarkable that so few terms are
required to achieve high accuracy. For E < E0 the spectral sum in Gspectral converges more rapidly than the
sum in Gspatial. Vice versa for E > E0, as predicted by the asymptotic expansion of the spectral and spatial
sums in (26) and (27), respectively.

To determine the number P of necessary p-terms used in the Taylor expansion in (17), the percentage rel-
ative error of the spectral part (20) of the Ewald representation is plotted in Fig. 5(a) versus the radial distance
q of the observation point from the array axis. The number of Ewald terms in (20) is kept equal to Q = 2,
which is enough to guarantee good accuracy as shown in Fig. 3. The relative error in Fig. 5(a) is defined using
as reference solution the same expression (20) evaluated with a large number P = 60 of p-terms. A larger num-
ber P of terms is necessary for larger distances q from the array axis. We observe that in Fig. 5(a), P = 20 is
satisfactory for good accuracy such as 10�4 % until q = 1.3d. In Fig. 5(b), for the same settings of Fig. 5(a), we
plot instead the percentage relative error of (10) with (20) and (25) (with Q = N = 2), taking as reference the
spectral representation (4) of the GF, which is not affected by the accuracy limits of the numerical subroutines
that evaluate the exponential integral E1(x) in (20) and the error functions erfc(x) in (25). This is why in
Fig. 5(b) the accuracy never falls below a certain value (determined by the accuracy limits of erfc(x) and
E1(x)) even for small q. Note that for P = 20 the accuracy becomes 10�4 % at q � 1.3d. The trend is in accor-
dance with the reasoning that led to (33). Repeating that discussion with P = 20, with a truncation error
� = 10�6, we would have ETaylor ¼ 2:2=q, and the condition (33) is equivalent to q < 1.24d.

5.1. Extension to high frequency

In Fig. 6(a) the frequency is further increased such that d = 5.5k and the high frequency breakdown prob-
lem described in Section 4.2 occurs. In this case we cannot choose the optimum parameter E ¼ E0. Indeed, if
we did, we would have k=ð2E0Þ ¼

ffiffiffi
p
p

d=k ¼ 9:75 in (25), yielding terms on the order of e95 that would cause
overflow or at least loss of accuracy. The Ewald splitting parameter E must therefore be chosen according to
(34). The rate of convergence of the two series in (20), (25) is then different, and more terms (Q > N) in Gspectral

(20) are needed in order to maintain the same relative error in both (20) and (25). The convergence rates of the
spectral and spatial sums of the Ewald representation are reported in (26) and (27), respectively. In Fig. 6(a)
the error is plotted versus N, with Q = 4N. Note that again a few terms are necessary (N = 2 and Q = 8) to
provide a good accuracy. The error cannot further decrease than that for N = 3 and Q = 12 by augmenting the
number of terms Q, N in Gspectral, Gspatial because of the accuracy limits of the numerical subroutines that eval-
uate the error functions and the exponential integral.

Fig. 6(b) shows the rate of convergence of the two individual series Gspectral and Gspatial in (20) and (25),
respectively, evaluated at the location (q,z) = (0.1,0.1)d. The relative error is defined as in (36). The two series
in Gspectral and Gspatial need different numbers of terms to achieve the same accuracy since we have chosen
E ¼ EHF > E0. The spatial series Gspatial needs only the n = 0 term and it is accurate enough to be off the scale
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Fig. 5. Convergence versus the number of terms P of p-sum in (20) for observation points ranging from q = 0.01d to 0.2d. The period
is d = 0.5k: (a) percentage relative error (36) of the spectral sum (20) where the reference solution is still evaluated using (20) with P = 60;
(b) percentage relative error (35) of the Green’s function G in (10) with (4) as reference solution.
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of the plot; hence only the number Q of terms in the spectral series Gspectral is given. The error in Fig. 6(b) does
not decrease significantly before Q = 6 because for this case (d = 5.5k) spectral terms with jqj 6 Q = 6 are
propagating and must be accounted for to obtain an accurate evaluation of the spectral part of the Ewald
representation.

Note that the larger the Ewald parameter, the greater the number of terms needed to achieve the same accu-
racy. The three cases with E ¼ EHF, are relative to EHF ¼ 1:05=k ¼ 3:28E0, EHF ¼ 1:19=k ¼ 3:72E0 and
EHF ¼ 1:57=k ¼ 4:9E0, where the optimum parameter (not so optimum in this case) is E0 ¼ 0:32=k. According
to (34), these cases correspond to choosing H = 3, 2.64 and 2, respectively. Clearly, as described in Section 4.2,
choosing a larger H (i.e., smaller EHF=E0) bounds the growth of the number of terms in Gspectral. Unfortu-
nately, H cannot be chosen too large because, as explained in Section 4.2, it would generate values on the
order of eH2

. It should also be noted that choosing E ¼ EHF, with decreasing H = 3, 2.64, 2, automatically
implies that the maximum values in the series Gspectral and Gspatial become smaller. For an array with
d = 5.5k, values of H > 3 (i.e., EHF=E0 < 3:28) would already cause a small loss of accuracy, while H < 2
(i.e., EHF=E0 > 4:9) would require too many terms in the Gspectral sum.

6. Conclusion

The Green’s function (GF) for a linear array of point sources linearly phased has been expressed in terms of
two series that exhibit Gaussian convergence as shown in Section 4.1. A description of the convergence prop-
erties, the analysis of the ‘‘high frequency breakdown’’ of the Ewald representation, and its remedy, have been
analyzed theoretically and with the help of numerical experiments.

It is important to note that the purely spectral representation of the GF (4), besides being much slower than
the Ewald representation, cannot be evaluated for q = 0, which is a very typical situation encountered when
analyzing periodic structures of 3D elements with 1D periodicity. In this particular case (q = 0) the spatial
representation in (1) (sum of spherical waves, which is in general even slower than the spectral representation
in (4)) can still be used, rendering the Ewald method even more desirable. When it is required to evaluate the
Green’s function for complex phasings, the spatial representation cannot be evaluated because it would
diverge (as well as the spectral method for q = 0), while the Ewald method can be evaluated also in this case.
The Ewald representation is particularly useful for small q, while for large q (of the order of a period), one can
use the well known spectral GF in (4) that is rapidly converging in this particular situation. Automatic optimal
switching between these two representation for a given accuracy is beyond the scope of this work and will be
investigated in the future, as well as a more thorough automatic algorithm for deciding the number of terms to
be used in the series and the switching parameters, as has been done in [22] for the Ewald representation dis-
covered in [2].
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