Applied Computational Electromagnetics Society Journal

Special Issue on Phased and Adaptive Array Antennas

Guest Editor Deb Chatterjee

November 2006 Vol. 21 No. 3 ISSN 1054-4887
GENERAL PURPOSE AND SCOPE: The Applied Computational Electromagnetics Society (ACES) Journal hereinafter known as the ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state-of-the-art, and the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to “re-invent the wheel” to solve a previously-solved computational problem in electrical engineering, physics, or related fields of study. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.

SUBMISSIONS: The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. Typical papers will represent the computational electromagnetics aspects of research in electrical engineering, physics, or related disciplines. However, papers which represent research in applied computational electromagnetics itself are equally acceptable.

Manuscripts are to be submitted through the upload system of ACES web site http://aces.ee.olemiss.edu. See “Information for Authors” on inside of back cover and at ACES web site. For additional information contact the Editor-in-Chief:

Dr. Atef Elsherbeni
Department of Electrical Engineering
The University of Mississippi
University, MS 386377 USA
Phone: 662-915-5382  Fax: 662-915-7231
Email: atef@olemis.edu

SUBSCRIPTIONS: All members of the Applied Computational Electromagnetics Society who have paid their subscription fees are entitled to receive the ACES Journal with a minimum of three issues per calendar year and are entitled to download any published journal article available at http://aces.ee.olemiss.edu.

Back issues, when available, are $15 each. Subscriptions to ACES are through the web site. Orders for back issues of the ACES Journal and changes of addresses should be sent directly to ACES Executive Officer:

Dr. Richard W. Adler
ECE Department, Code ECAB
Naval Postgraduate School
833 Dyer Road, Room 437
Monterey, CA  93943-5121 USA
Fax: 831-649-0300
Email: rwa@attglobal.net

Allow four week’s advance notice for change of address. Claims for missing issues will not be honored because of insufficient notice or address change or loss in mail unless the Executive Officer is notified within 60 days for USA and Canadian subscribers or 90 days for subscribers in other countries, from the last day of the month of publication. For information regarding reprints of individual papers or other materials, see “Information for Authors”.

LIABILITY. Neither ACES, nor the ACES Journal editors, are responsible for any consequence of misinformation or claims, express or implied, in any published material in an ACES Journal issue. This also applies to advertising, for which only camera-ready copies are accepted. Authors are responsible for information contained in their papers. If any material submitted for publication includes material that has already been published elsewhere, it is the author’s responsibility to obtain written permission to reproduce such material.
APPLIED
COMPUTATIONAL
ELECTROMAGNETICS
SOCIETY
JOURNAL

Special Issue on
Phased and Adaptive Array Antennas

Guest Editor
Deb Chatterjee

November 2006
Vol. 21 No. 3

ISSN 1054-4887

The ACES Journal is abstracted in INSPEC, in Engineering Index, and in DTIC.

The first, fourth, and sixth illustrations on the front cover have been obtained from the Department of Electrical Engineering at the University of Mississippi.

The third and fifth illustrations on the front cover have been obtained from Lawrence Livermore National Laboratory.

The second illustration on the front cover has been obtained from FLUX2D software, CEDRAT S.S. France, MAGSOFT Corporation, New York.
This invited special issue of the Applied Computational Electromagnetics Society (ACES) Journal on Phased and Adaptive Array Antennas aims to capture information on a broad spectrum of the various aspects involved in array radiating systems and their applications. Recent advances in this area can be found in [1]-[3]. The earlier special issue [4] on a closely similar topic served as a guide in preparing for this ACES special issue. The information gleaned from these sources resulted in a widening of the scope of this special issue than was originally planned. For enhanced impact, it appeared appropriate to solicit contributions from leading researchers in the antennas and computational electromagnetics (CEM) areas. To that end, in quite a few cases, the topic of the invited contribution was suggested to the individual authors. All invited papers were peer-reviewed per standard guidelines.

In all there are twenty papers co-authored or authored by leading researchers from various countries. They represent a wide range of topics on phased and adaptive arrays. Specifically, papers on characteristic basis functions, genetic algorithms, ship-board arrays, conformal arrays, phased arrays for biomedical applications, multiple-beam phased arrays, array mutual coupling compensation, power-divider network, etc., appear here and provide useful information on both modeling and practical applications of phased and adaptive arrays. The valuable contribution of the authors and their patience is gratefully acknowledged.

In the course of assembling the special issue, special thanks go to Prof. Atef Elsherbeni (editor-in-chief) and Prof. Alexander Yakovlev (associate editor-in-chief) of ACES Journal, University of Mississippi (Ole Miss). The encouragement from Dr. W. Ross-Stone, editor-in-chief, IEEE Antennas and Propagation Magazine, is deeply appreciated. It is a pleasure to acknowledge the extensive editorial help from Mr. Mohamed Al Sharkawy (Ole Miss), in the final stages. At University of Missouri Kansas City (UMKC), Mr. Naresh Vijaya Yalamanchili had painstakingly retyped some of the manuscripts for this invited special issue. Thanks to all of them for their continued encouragement and timely help. Without their active support this endeavor would not have come to fruition.

The final judgment on the quality of this invited special issue rests on the reader. It is hoped that the reader shall find the contents in these papers of continuing value. Any drawback or other errors is the sole responsibility of the guest editor.

References


Deb Chatterjee is an associate professor of Electrical and Computer Engineering, with the Computer Science and Electrical Engineering (CSEE) Department at University of Missouri Kansas City (UMKC), where he joined as a faculty in August 1999. He obtained his M.A.Sc. and Ph.D. degrees in Electrical and Computer Engineering and Electrical Engineering, from Concordia University, Montreal, Canada and University of Kansas, Lawrence, Kansas, respectively. His current research interests are in phased arrays, high-frequency scattering and propagation, miniature, ultra-wideband microstrip antennas. He has served as a reviewer of technical articles for IEEE Transactions on Antennas and Propagation, IEEE Antennas and Wireless Propagation Letters, Radio Science, and the Applied Computational Electromagnetics Society (ACES) Journal. Currently he serves as an associate editor for International Journal of Antennas and Propagation (IJAP). Dr. Chatterjee has published 35 articles in peer-reviewed journals and conference proceedings, and has taught courses in the area of electromagnetics and antennas at undergraduate and graduate levels. He is a member of the IEEE Antennas and Propagation and the Applied Computational Electromagnetics Societies.
### TABLE OF CONTENTS

"A Hybrid Framework for Antenna/Platform Analysis"
R. J. Burkholder, P. H. Pathak, K. Sertel, R. J. Marhefka, J. L. Volakis, and R. W. Kindt 177

"Low SAR Phased Antenna Array for Mobile Handsets"
J. Moustafa, N. J. McEwan, R. A. Abd-Alhameed, and P. S. Excell 196

"Numerical Simulation Approaches for Phased Array Design"
L. Sevgi 206

"Modeling Large Phased Array Antennas Using the Finite Difference Time Domain Method and the Characteristic Basis Function Approach"
N. Farahat, R. Mittra, and N. Huang 218

"Direction of Arrival Estimation in a Multipath Environment: an Overview and a New Contribution"
E. M. Al-Ardi, R. M. Shubair, and M. E. Al-Mualla 226

"Polarization Isolation Characteristics Between Two Center-Feed Single-Layer Waveguide Arrays Arranged Side-by-Side"
Y. Tsunemitsu, J. Hirokawa, M. Ando, Y. Miura, Y. Kazama, and N. Goto 240

"Radiation by a Linear Array of Half-Width Leaky-Wave Antennas"
D. Killips, J. Radcliffe, L. Kempel, and S. Schneider 248

"Macro-Scale Basis Functions for the Method of Moment Analysis of Large Periodic Microstrip Arrays"
A. Cucini and S. Maci 256

"A Serial-Parallel FDTD Approach for Modeling the Coupling problem between Two Large Arrays"
R. Mittra, H. E. Abd-El-Raouf, and N. Huang 267

"Preconditioned GIFFT: A Fast MoM Solver for Large Arrays of Printed Antennas"
B. J. Fasenfest, F. Capolino, and D. R. Wilton 276

"Generalized Scattering Matrix (GSM) Approach for Multilayer Finite Array Analysis"
A. K. Bhattacharyya 284
"Modeling the RF Performance of a Small Array"
  P. R. Foster and A. E. Wicks.................................................................291

"A Critical Examination of Receive and Transmit Scan Element Pattern for Phased Arrays"
  R. C. Hansen.........................................................................................299

“Modeling Conformal Array Antennas of Various Shapes Using Uniform Theory of Diffraction (UTD)"
  P. Persson .............................................................................................305

"Efficient Wideband Power Divider for Planar Antenna Arrays"
  V. Demir, D. A. Elsherbeni, D. Kajfez, and A. Z. Elsherbeni .................318

"Genetic Algorithm Applications for Phased Arrays"
  R. L. Haupt ..........................................................................................325

"Genetic Algorithm Optimization of a Traveling Wave Array of Longitudinal Slots in a Rectangular Waveguide"
  A. Jensen and S. R. Rengarajan..............................................................337

"Approximate Compensation for Mutual Coupling in a Direct Data Domain Least Squares Approach using the In-situ Measured Element Patterns"
  W. Choi, T. K. Sarkar, O. E. Allen, and J. S. Asvestas.............................342

"Multiple Beam Antenna Technology for Satellite Communications Payloads"
  S. Rao, M. Tang, and C. Hsu.................................................................353

"A Survey of Phased Arrays for Medical Applications"
  C. Furse ...............................................................................................365

© 2006, The Applied Computational Electromagnetics Society
Preconditioned GIFFT: A Fast MoM Solver for Large Arrays of Printed Antennas

(Invited Paper)

1,2 B. J. Fasenfest, 1,3 F. Capolino, and 1 D. R. Wilton
1 Department of Electrical and Computer Engineering, University of Houston, Houston TX, USA
(e-mail: capolino@dii.unisi.it, wilton@uh.edu)
2 Lawrence Livermore National Laboratory, Livermore, CA, USA
3 Department of Information Engineering, University of Siena, 53100 Siena, Italy

Abstract—A new type of fast method of moments (MoM) solution scheme using standard basis functions for large arrays with arbitrary contours and/or missing elements is applied to array antennas in a layered configuration. The efficiency of the method relies on use of the FFT along with approximating the Green’s function as a separable sum of interpolation functions defined on a relatively sparse, uniform grid. The method is ideally suited for solving array problems, and its effectiveness is demonstrated here for planar arrays of printed antennas. Both fill and solve times, as well as memory requirements, are dramatically improved with respect to standard MoM solvers.

Index Terms—Array antennas, fast solvers, method of moments, periodic structures.

I. INTRODUCTION

A straightforward numerical analysis of large arrays requires significant memory storage and long computation times. Several techniques are currently under development to reduce this cost. One such technique is the GIFFT (Green’s function interpolation and FFT) method [1] that belongs to the class of fast solvers for large structures. This method uses a modification of the standard AIM approach [2] that takes into account the reusability properties of matrices that arise from identical array elements. Like the methods presented in [3]-[6], the GIFFT algorithm is an extension of the AIM method in that it uses basis-function projections onto a rectangular grid of Green’s function samples that are interpolated with Lagrange interpolating polynomials. The use of a rectangular grid results in a matrix-vector product involving the Green’s function samples that is convolutional in form and can thus be evaluated using FFTs. Although our method differs from [3]-[6] in various respects, the primary differences between the AIM approach [2] and the GIFFT method [1] is the latter’s use of interpolation to represent the Green’s function (GF) and its specialization to periodic structures by taking into account the reusability properties of matrices that arise from interactions between identical cell elements.

It should be mentioned that fast multipole methods (FMM) [7]-[9] have also been effectively applied to model large structures. In addition, a general numerical scheme has been introduced in [10] that use FMM to determine the coupling between periodic cells, with the interior of each cell being analyzed by the finite element method. To reduce the fill and solve time, other algorithms have been developed that use periodicity-induced physical properties. For example, the methods in [11], [12] use an a priori estimate of the fields scattered by truncated arrays, which behave as Floquet-modulated-diffracted fields [13], to construct global basis functions.

The present work reports performances of the GIFFT method for the cases of conducting dipole antennas in free space and printed on a dielectric grounded slab (Fig. 1), and for patch antennas fed by aperture slots excited by microstrip lines (Fig. 2). For these cases, the Lagrange interpolation scheme is applied to the layered material dyadic Green’s function for the mixed potential integral equation [14]. Furthermore, a multi-region interaction is considered since magnetic current unknowns are located on both sides of a shorted screen separating the two regions on either side of the slot (Fig. 2). A block
preconditioning scheme is implemented to greatly reduce the number of iterations required for a solution. If the array consists of planar conducting bodies, the array elements are meshed using standard subdomain basis functions for triangles [15]; the same bases may be used in the apertures where magnetic unknowns are defined. The GIFFT algorithm has been implemented in the standard method of moments (MoM) code EIGERTM [16]. In our implementation, the array boundaries are not restricted to be rectangular, and the array excitation can be arbitrary.

The method greatly reduces solution time by speeding up the computation of matrix-vector products needed in iterative solutions. The GIFFT approach also reduces fill time and memory requirements since the sparse interpolation can be used for all but near element interactions.

II. FEED REGION AND RADIATION REGION: DEFINITION OF INTERPOLATION DOMAIN

The antenna structures analyzed in this paper are shown in Figs. 1 and 2. In Fig. 1 an array antenna of conducting dipoles is printed on a grounded dielectric substrate. The dipoles are fed by delta gap generators and meshed with triangles that form the sub-domains of triangle surface patch basis functions. Voltage generators \( V^p_g \), with \( p = (p_1, p_2) \) a generic double index, are defined for all the dipoles.

In the second example, illustrated in Fig. 2, the region above the ground plane may include a multilayered substrate with conducting patches fed by slots. Below each slot the microstrip line feeding each antenna is assumed not to interfere with the feed networks of other patches. Mutual coupling between the patches and the slots is considered in the region above the ground plane. Hence, the only model approximation is to neglect coupling between the microstrip lines and slots in the region below the ground plane.

The multiport analysis that one may obtain from this approach may subsequently be used as a multiport equivalent network for designing (or refining) the actual feed network. Array scan blindness, grating lobes and array edge effects are correctly taken into account since they are produced by the mutual coupling above the ground plane. In Fig. 2, voltage generators \( V^p_s \) are defined on the microstrip lines below every slot. Concerning notation, as shown in Figs. 1 and 2, the array is decomposed into blocks of elements with each element denoted by the two-component multi-index \( p \); a prime is added to distinguish source from observation element locations \((p') = (p'_1, p'_2)\). Within each block representing an element, the electric and magnetic currents are expressed in terms of the usual divergence-conforming basis functions \( \Lambda^p_\alpha \). The \( m \)-indexed test functions are denoted by \( \Lambda^\alpha_m \) (see [1] for more details).

In solving the system, the vanishing of the tangential electric field is imposed on every conducting patch in Fig. 1, leading to the discretized electric field integral equation (EFIE) defined in the standard way (see also [1])

\[
\begin{bmatrix}
Z^{pp'}_{mn} & \mathbf{I}^p_n \\
\mathbf{I}^p_n & \mathbf{V}^p_{g,n}
\end{bmatrix}
\]

(1)

Fig. 2. Single array element of an array of printed antennas in a multilayered environment. (a) Lateral view; (b) Top view. The \( p \)th element is fed by an independent microstrip line excited by a voltage \( V^p_s \) \((p= (p_1, p_2) \) is a double index). The array elements are coupled via the region above the ground plane. Identical feed lines for each array antenna are assumed uncoupled; hence the Green’s function is interpolated only in the region above the ground plane. The weights of the electric unknowns defined on each \( p \)th dipole and \( V^p_{g,n} \) are the voltage generators. For the geometry in Fig. 2 the magnetic currents provide continuity of the electric field, and we impose continuity of the magnetic field (MFIE) on each of the M slots. Therefore, electric unknowns are defined on the patch \((\mathbf{I}^p_n)\) and microstrip \((\mathbf{T}^p)\) while...
magnetic unknowns \([V^p_n]\) are placed on the slots, resulting in the system equation
\[
\begin{bmatrix}
Z_{mn}^{pp} & 0 & -\beta_{mn}^{pp} \\
0 & 0 & 0 \\
\beta_{mn}^{pp} & 0 & Y_{mn}^{pp} \\
\end{bmatrix}
\begin{bmatrix}
V^p_n \\
1^p \\
V^p_{m,n} \\
\end{bmatrix} =
\begin{bmatrix}
\delta_{p,p} \\
0 \\
0 \\
0 \\
\end{bmatrix}.
\]
\[\text{for } p = p', \text{ and } \delta_{p,p'} = 0 \text{ for } p \neq p'. \]

Note that the number of blocks in the first matrix in (2) grows as the square of the number of array elements while the size of the second matrix remains the same for any number of array elements.

Using standard MoM, the matrix in (1) or the first matrix in (2) has huge memory, fill, and solve time requirements for large arrays. This computational difficulty arises from the top region because of the coupling between even widely separated array elements that in most situations cannot be neglected. The numerical burden is reduced by applying GIFFT to this region. That is, the Green’s function terms in this region are sampled and interpolated as shown below, and the matrix vector product for the majority of the system is accelerated by using the FFT.

III. THE GIFFT METHOD

For simplicity we show the basic idea of the GIFFT method only for the EFIE, i.e., the moment matrix-vector for the original discretized EFIE in (1). Analogous concepts apply to the other operators \(\beta_{mn}^{pp} \) and \(Y_{mn}^{pp} \) involved in (2). Thus, (1) or the first block product from the left matrix of (2), is written as [1]
\[
\begin{align*}
\mathbf{Z}_{mn}^{pp} & \mathbf{1}^p = \Delta \mathbf{Z}_{mn}^{pp} \mathbf{1}^p + \mathbf{Z}_{mn}^{pp} \mathbf{1}^p \\
& = \mathbf{Z}_{mn}^{pp} \mathbf{1}^p.
\end{align*}
\]

The + or – superscripts denote operators for regions above or below the ground plane. The matrix \(Z_{mn}^{pp}\) is the EFIE operator connecting blocks \(p\) and \(p'\), and \(Y_{mn}^{pp}\) is its dual, representing the magnetic field due to magnetic current sources; \(\beta_{mn}^{pp}\) is the corresponding magnetic field integral equation (MFIE) operator. Subscripts \(m\) and \(n\) index testing and basis functions within cells \(p\) and \(p'\), respectively, and the matrix vector products in (1), (2) sum over the indices \(m\)

![Square patch](image)

Fig. 3. Array cell index definitions and arbitrary skew lattice vectors \(s_i, s_j\). The periodic grid on which the Green’s function is evaluated and sampled is shown superimposed on the array cells. Within an array cell, the Green’s function is evaluated at \(r_1 \times r_2 \times r_3\) points

The square-shape darker regions represent conductors within the array cells.

and \(p' = (p', p'_i)\). The corresponding matrices \(Z_{mn}^{pp}, Y_{mn}^{pp}, \) and \(\beta_{mn}^{pp}\) that appear only on diagonal blocks represent the coupling to the structures below the ground plane for each array element; they affect only the \(p = p'\) self blocks because the Kronecker delta \(\delta_{p,p'} = 1\) for \(p = p'\), and

\[
\begin{align*}
\mathbf{Z}_{mn}^{pp} & \mathbf{1}^p = \Delta \mathbf{Z}_{mn}^{pp} \mathbf{1}^p + \mathbf{Z}_{mn}^{pp} \mathbf{1}^p \\
& = \mathbf{Z}_{mn}^{pp} \mathbf{1}^p.
\end{align*}
\]

where \(\mathbf{Z}_{mn}^{pp}\) denotes matrix elements approximated via the interpolation scheme. The interpolation, however, is inaccurate for nearby cells, which require the correction matrix \(\Delta \mathbf{Z}_{mn}^{pp} = \mathbf{Z}_{mn}^{pp} - \mathbf{Z}_{mn}^{pp} \). The correction matrix is a block Toepplitz difference matrix that may be taken as zero for elements whose indices satisfy \(|p_i - p'_i| \geq c_1\) and \(|p_j - p'_j| \geq c_2\) for some constants \((c_1, c_2)\); hence it is sparse. Furthermore, it is constructed from a single computation on a stencil of cells consisting of an observation cell and adjacent cells. The \(m\)-indexed test functions are denoted by \(\Lambda_n^p\) (see [1] for more details.)

To evaluate the matrix/vector product, we note that \([\Delta \mathbf{Z}_{mn}^{pp}]^\ast [\mathbf{1}^p]\) is quickly computed since \(\Delta \mathbf{Z}_{mn}^{pp}\) is sparse, whereas \([\mathbf{Z}_{mn}^{pp}]^\ast [\mathbf{1}^p]\) is of convolutional form and can be evaluated using a 2D FFT as follows [1]:
\[
[\mathbf{Z}_{mn}^{pp}]^\ast [\mathbf{1}^p] = \sum_{i,j} <\Lambda_n^p, L_j >.
\]

where \(\sum_{i,j}^k\) is the convolution of \([\mathbf{Z}_{mn}^{pp}]^\ast [\mathbf{1}^p]\) with \(\Lambda_n^p\) and \(\Lambda_n^p > [\mathbf{1}^p]\)

\[
\text{where } i, j \text{ and } i', j' \text{ denote periodic grid points for the Green’s function evaluations (Fig. 3), and the double bars}
\]

\[
\text{are placed on the slots, resulting in the system equation}
\]

\[
\begin{bmatrix}
Z_{mn}^{pp} & 0 & -\beta_{mn}^{pp} \\
0 & 0 & 0 \\
\beta_{mn}^{pp} & 0 & Y_{mn}^{pp} \\
\end{bmatrix}
\begin{bmatrix}
V^p_n \\
1^p \\
V^p_{m,n} \\
\end{bmatrix} =
\begin{bmatrix}
\delta_{p,p} \\
0 \\
0 \\
0 \\
\end{bmatrix}.
\]

\[\text{for } p = p', \text{ and } \delta_{p,p'} = 0 \text{ for } p \neq p'. \]

Note that the number of blocks in the first matrix in (2) grows as the square of the number of array elements while the size of the second matrix remains the same for any number of array elements.

Using standard MoM, the matrix in (1) or the first matrix in (2) has huge memory, fill, and solve time requirements for large arrays. This computational difficulty arises from the top region because of the coupling between even widely separated array elements that in most situations cannot be neglected. The numerical burden is reduced by applying GIFFT to this region. That is, the Green’s function terms in this region are sampled and interpolated as shown below, and the matrix vector product for the majority of the system is accelerated by using the FFT.

III. THE GIFFT METHOD

For simplicity we show the basic idea of the GIFFT method only for the EFIE, i.e., the moment matrix-vector for the original discretized EFIE in (1). Analogous concepts apply to the other operators \(\beta_{mn}^{pp} \) and \(Y_{mn}^{pp} \) involved in (2). Thus, (1) or the first block product from the left matrix of (2), is written as [1]

\[
\begin{align*}
\mathbf{Z}_{mn}^{pp} & \mathbf{1}^p = \Delta \mathbf{Z}_{mn}^{pp} \mathbf{1}^p + \mathbf{Z}_{mn}^{pp} \mathbf{1}^p \\
& = \mathbf{Z}_{mn}^{pp} \mathbf{1}^p.
\end{align*}
\]

where \(\mathbf{Z}_{mn}^{pp}\) denotes matrix elements approximated via the interpolation scheme. The interpolation, however, is inaccurate for nearby cells, which require the correction matrix \(\Delta \mathbf{Z}_{mn}^{pp} = \mathbf{Z}_{mn}^{pp} - \mathbf{Z}_{mn}^{pp} \). The correction matrix is a block Toepplitz difference matrix that may be taken as zero for elements whose indices satisfy \(|p_i - p'_i| \geq c_1\) and \(|p_j - p'_j| \geq c_2\) for some constants \((c_1, c_2)\); hence it is sparse. Furthermore, it is constructed from a single computation on a stencil of cells consisting of an observation cell and adjacent cells. The \(m\)-indexed test functions are denoted by \(\Lambda_n^p\) (see [1] for more details.)

To evaluate the matrix/vector product, we note that \([\Delta \mathbf{Z}_{mn}^{pp}]^\ast [\mathbf{1}^p]\) is quickly computed since \(\Delta \mathbf{Z}_{mn}^{pp}\) is sparse, whereas \([\mathbf{Z}_{mn}^{pp}]^\ast [\mathbf{1}^p]\) is of convolutional form and can be evaluated using a 2D FFT as follows [1]:

\[
[\mathbf{Z}_{mn}^{pp}]^\ast [\mathbf{1}^p] = \sum_{i,j} <\Lambda_n^p, L_j >.
\]

where \(\sum_{i,j}^k\) is the convolution of \([\mathbf{Z}_{mn}^{pp}]^\ast [\mathbf{1}^p]\) with \(\Lambda_n^p\) and \(\Lambda_n^p > [\mathbf{1}^p]\)

\[
\text{where } i, j \text{ and } i', j' \text{ denote periodic grid points for the Green’s function evaluations (Fig. 3), and the double bars}
\]
Physically, this preconditioner solves the inverse fast Fourier transform (FFT); \( \text{FFT}^{-1} \) denotes the inverse fast Fourier transform, and \( \text{MASK}_i \) is the array mask restricting the result to array elements within the array boundary. \( < \mathbf{A}_{m}, L_i L_j > \) is the projection of the \( m \) th basis function in the \( p \) th cell onto the Lagrange polynomial \( L_i L_j \) interpolating the \( i, j \) th point. \( \mathcal{G}_{m,i,j}^{p} \) represents the sampled Green’s electric field dyad (though in reality the field is calculated in mixed-potential form). Since vector basis functions are used, \( < \mathbf{A}_{m}, L_i L_j > \) is a vector. For arrays made of nonplanar scatterers in free space the FFT algorithm is applied to the interpolation points along \( z \), while for layered media the FFT is only applied along the two transverse directions \( S_1 \) and \( S_2 \) along the planar array.

In homogeneous media, the dyad can be expressed in terms of a single scalar potential. For layered material, however, the far interactions require the computation and storage of the five non-zero components of the magnetic vector potential Green’s dyad and two scalar potentials for all possible interactions between interpolating points in at most two planes separated in the \( z \) dimension, and for all unique discrete separations in the transverse dimension. There is a very high cost of computing these seven Green’s potentials compared to the homogeneous medium case, but this cost is dramatically reduced by first generating the potentials at a suitable set of sample points along radial lines in each source plane representing possible source/observation point separations in the transverse dimension. Potential values between sample points along the sampling line are accurately generated via a non-rational interpolation scheme. Along any other radial line, potentials having the same separation can be constructed from those along the sampling line simply by multiplying by factors involving at most cosines or sines of the angle from the sampling line. The Green’s function values along the sampling line are thus used to generate values on the regular grid by interpolation; in turn, a second level of interpolation on the grid is employed in the GIFFT algorithm. The increased number of potential components increases memory requirements when layered media are present, but does not increase the number of FFT’s that must be performed per iteration. Furthermore, the Green’s potential samples themselves are transformed only once, before any iterations are performed. During each iteration, the updated current coefficients are projected onto the interpolating grid as usual. Once the projections are transformed into the spectral domain, then a single matrix vector multiplication for each dyadic component of the Green’s function must be performed. The inverse transform is then computed to complete the iteration step. Assuming \( N \) interpolation points, the number of multiplications in the spectral domain is \( O(N) \) while the FFT operation is \( O(N \log N) \). Hence, the presence of the extra Green’s function terms does not greatly slow the iteration.

IV. BLOCK DIAGONAL PRECONDITIONER

When using an iterative solver such as BiCGStab on a very large matrix system, the solution may converge very slowly if conditioning is poor. For this reason, a preconditioner is needed to improve the solution time. Since many arrays are designed to minimize mutual coupling between array elements, a block diagonal preconditioner for an array seems a logical and simple choice. This preconditioner consists of the self-cell interaction terms of the impedance matrix only. The inverse of this matrix is also a block-diagonal matrix and contains the inverse of the self-array cell blocks \( [Z_{\text{int}}]_{pp'} \), with \( p = p' \). Physically, this preconditioner solves the original problem as if there were no interaction between array cells. For array designs with little mutual coupling this is a very good assumption and often only a handful of iterations are required. For arrays with strong coupling some deterioration in performance is to be expected. Because an accurate computation of the self block is needed for the near interaction corrections, this preconditioner does not require additional setup time. The cost of inverting a self block is also negligible since the number of unknowns involved is small compared to the overall array size. Thus after each matrix-vector product is computed during an iteration, the resulting vector is multiplied by the preconditioner, adding an \( O(MN^3) \) computation to the total time for the matrix vector product (\( M \) is the number of array elements and \( N \) is the number of degrees of freedom in each array cell.)

V. RESULTS

Four different test array geometries were simulated and the results of the GIFFT method, both with and without preconditioning, were compared to an “exact” MoM solution of these arrays. The “exact” solution does not use interpolation or fast multiplication, but does utilize the Toeplitz nature of the matrices to speed fill time and reduce storage.

A. Array of Dipoles

The first two arrays consist of \( 20 \times 20 \) elements with a lattice spacing \( S_1 = S_2 = 0.5 \lambda_0 \), where \( \lambda_0 \) is the free space wavelength, in both \( x \) and \( y \) directions. Each dipole is fed by a delta gap source at its center. Each dipole
contains 23 unknowns and is $0.39\lambda_0$ long and $0.01\lambda_0$ wide. In the first test case the dipoles are in free space, while in the second one the same dipoles are printed on a grounded dielectric slab as in Fig. 1. The height of the dielectric slab is $d = 0.19\lambda_0$ and its relative permittivity is $\varepsilon_r = 2.55$, as for the case treated in [17]. Both these cases used fourth order interpolation of the Green’s Function in both transverse directions. The GF is thus sampled at five points in each direction, resulting in $r_1 \times r_2 = 5 \times 5 = 25$ points for each array cell. Interpolation points are also distributed along the border of an array cell and are thus shared by contiguous cells, so the computational burden is determined by the evaluation and storage of the various GF components for only 16 distinct points per array cell.

The third case analyzed consists of an array of $25 \times 25$ square conducting patches in free space illuminated by a plane wave at 6 GHz incident from a direction perpendicular to the array plane. The patches are 11.4 [mm] on a side with a separation of 3.8 [mm] between patches, and thus the lattice spacings are $S_1 = S_2 = 15.2$ [mm]. Each patch was meshed using triangles, creating 65 unknowns per patch. This GIFFT method used fifth order (25 distinct points per cell) interpolating polynomials in both planar directions.

The results in Fig. 4 are related to an array of $19 \times 19$ (to match the results in [17]) dipole elements on the same grounded dielectric slab considered before ($d = 0.19\lambda_0$, $\varepsilon_r = 2.55$) that exhibits scan blindness in the E-plane at $\theta = 45.8^\circ$ [17], [18]. Therefore the dipoles are fed with a linear progressive phase along $x$ so as to scan the array beam along the $\theta$ direction in the E-plane (the $x-z$ plane in Fig. 1). The active reflection coefficients for the center row of array elements are shown for various scan angles. As pointed out in [17], the results show that for a broadside scan angle $\theta = 0^\circ$ the reflection coefficients are symmetric with respect to the center element (the 10th) that is well matched, i.e., the magnitude of the reflection coefficient is much less than unity. This verifies that the antenna elements have been matched to the input impedance of the center element at broadside. When the array is scanned to $\theta = 45^\circ$, the reflection coefficient varies considerably across the center row of the array. The center element actually has a reflection coefficient greater than unity, which implies...
that it absorbs power from some of the other elements. In other words, the left-hand dipoles in Fig. 4 radiate power, some of which is delivered to the right-hand array elements through the strongly-excited guided wave on the structure. For this particular scan angle, most of the elements are not matched, showing the scan blindness effect, yet a few near the array edges still have relatively low reflection coefficients. These results for the reflection coefficient show very good agreement with previously published results for this array [17, Fig. 4].

### B. Array of Patch Antennas Excited by Slots

The final case considered is an array of elements that are geometrically more complex, as shown in Fig. 2, and the meshed patch, slot and microstrip are shown in Fig. 5. Two cases are considered: an array of $8 \times 8$ and a larger one of $25 \times 25$ element. The array elements are arranged on a rectangular lattice with periods $S_1 = S_2 = 30$ [mm]. The square conducting patches with dimensions $24.5 \times 24.5$ [mm] are placed on a grounded dielectric substrate with $2.17 \times \varepsilon_\text{r}$ and height =3 [mm]. The feeding slot has dimensions $10 \times 1.5$ [mm] and is located 5.25 [mm] off the center of the patch. The microstrip under the ground plane has a width of 1.6 [mm], and a length of 17 [mm] that includes an open stub of length 10 [mm]. The microstrip substrate has $\varepsilon_r=2.17$ and a thickness of 0.5 [mm]. The microstrip lines are excited by delta gap voltage generators and the operating frequency is 3.7 GHz. The design is not optimized to minimize the input impedance over a certain band, but is merely intended to illustrate the effectiveness of our new method. Each patch, slot and microstrip is meshed using quadrilaterals, creating 128 unknowns per array element as shown in Fig. 5. The GIFFT method used fourth-order interpolating polynomials in both planar directions.

Table 1 shows the run times for the standard MoM and GIFFT solution of the array. It can be clearly seen that the GIFFT method offers a dramatic savings in both setup and solve times while maintaining a high level of accuracy. In this case the BiCGstab iterations are stopped when the algorithm’s relative solution error falls below $0.5 \times 10^{-4}$ to limit the overall simulation time. Also in this case it is seen that the use of the preconditioner dramatically reduces the number of BiCGstab iterations needed for a solution, further reducing solution time. For the larger 25x25 elements array the iterations are stopped when the error falls below $10^{-2}$.

As in the previous cases, the memory storage requirements are dramatically reduced by GIFFT. For example, for the $M = 625 = 25 \times 25$ square patch array, each element is discretized using $N=128$ basis functions (112 on the patch, 5 on the slot and 11 on the microstrip), requiring a storage of $N \times N = 16384$ complex numbers for each $p.p'$ block $[Z_{pp'}]$ of the impedance matrix. Instead, using GIFFT with a fourth-order interpolation scheme, requiring $n_1 \times n_2 = 5 \times 5 = 25$ sampling points per cell, only 16 distinct Green’s function samples per cell are stored. For the layered medium considered here, this number must be multiplied by seven, the number of unique dyadic and scalar potential terms used in the mixed-potential formulation. The GIFFT storage advantage is further amplified by the fact that for $M = 625$ array elements in the square array, there are $M^2 = 390625$ matrix blocks in the complete matrix (which is why a Toeplitz fill was used instead), while there are only about $4M = 2500$ blocks of sampled Green’s function points. For the $25 \times 25$ array, this means that the system matrix...
for a standard MoM must contain about $117 \times 117 \times M^2 + 16 \times 16 \times M = 5.3 \times 10^2$ complex entries; this reduces to $117 \times 117 \times (2M - 1)$ $+ 16 \times 16 \times M = 17.1 \times 10^6$ when stored in the Toeplitz format. By contrast, there are only $7 \times 16 \times 4 \times M = 280 \times 10^3$ entries in the sampled Green’s function array in addition to those relative to the self blocks and difference matrix (see (2)) that also grow as $M$.

Table 2: Matrix setup (fill) and solve times for GIFFT and standard MoM.

<table>
<thead>
<tr>
<th>Array of patches with slots and microstrip lines (Fig.2)</th>
<th>Setup Time [s]</th>
<th>Solve Time [s]</th>
<th>Number Iterations</th>
<th>Average % Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array 8x8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoM w/ Toeplitz fill w/o precond.</td>
<td>1797</td>
<td>12551</td>
<td>2373</td>
<td>---</td>
</tr>
<tr>
<td>GIFFT w/o precond.</td>
<td>240</td>
<td>4627</td>
<td>2473</td>
<td>0.55</td>
</tr>
<tr>
<td>GIFFT w/ precond.</td>
<td>240</td>
<td>36</td>
<td>19</td>
<td>0.55</td>
</tr>
<tr>
<td>Array 25x25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoM w/ Toeplitz fill w/ precond.</td>
<td>= 9 hr</td>
<td>= 11 min per sing BiCGstab iteration</td>
<td>&gt;100 program stopped before end</td>
<td>---</td>
</tr>
<tr>
<td>GIFFT w/ precond.</td>
<td>= 25 min</td>
<td>= 4 min (14s per iteration)</td>
<td>17</td>
<td>---</td>
</tr>
</tbody>
</table>

VI. CONCLUSION

The GIFFT method for solving large array problems [1] is extended here to arbitrary arrays of printed elements in a layered material with the possible slot feeds. A block diagonal preconditioner has been tested and found to greatly improve the solution time by reducing the number of iterations required by the BiCGstab solver. The examples presented show the advantages of the method in reducing the memory requirements of the MoM matrix, as well as in reducing setup and solution times. A multiport analysis of such arrays can thus be performed in reasonable time even for large array structures. An extension of the GIFFT algorithm for arrays of cavity-backed patch antennas is currently under progress.

REFERENCES


Bejamin J. Fasenfest was born in Sacramento, CA, in 1980. He received the B.S. (summa cum laude) from the University of Houston in 2002, where an undergraduate research fellowship funded his research of dielectric resonator antennas. He was awarded a Tau Beta Pi fellowship, and continued on to a M.S. at the University of Houston in 2004, with a thesis on fast methods for large arrays. From 2004 to the present, he has worked at Lawrence Livermore National Laboratory, where his research interests include computational electromagnetics and electromagnetics modeling, from statics to terahertz.

Filippo Capolino was born in Florence, Italy, in 1967. He received the Laurea degree (cum laude) in electronic engineering and the Ph.D. degree, from the University of Florence, Italy, in 1993 and 1997, respectively. He has been a Research Associate until 2002 at the Dept. of Information Engineering, University of Siena, Italy, where he is presently an Assistant Professor. From 1997 to 1998, he was a Fulbright Research Visitor with the Dept. of Aerospace and Mech. Engineering, Boston University, MA, where he continued his research with a

Donald R. Wilton was born in Lawton, OK, October 25, 1942. He received the B.S., M.S., and Ph.D. degrees from the University of Illinois, Urbana-Champaign, in 1964, 1966, and 1970, respectively. From 1965 to 1968 he was with Hughes Aircraft Co., Fullerton, CA, engaged in the analysis and design of phased array antennas. From 1970–1983 he was with the Department of Electrical Engineering, University of Mississippi, and since 1983 he has been Professor of Electrical Engineering at the University of Houston. From 1978–1979 he was a Visiting Professor at Syracuse University. During 2004-2005 he was an Invited Assistant Professor at the Polytechnic of Turin, Italy, the Sandia National Laboratories, and the University of Washington. His primary research interest is in computational electromagnetics, and he has published, lectured, and consulted extensively in this area.

Dr. Wilton is a Fellow of the IEEE and received the IEEE Third Millenium Medal. He has served the IEEE Antennas and Propagation Society as an Associate Editor of the Transactions on Antennas and Propagation, as a Distinguished National Lecturer, and as a member of AdCom. Dr. Wilton is also a member of Commission B of URSI, in which he has held various offices including Chair of U. S. Commission B.
<table>
<thead>
<tr>
<th>INSTITUTIONAL MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIAN DEFENCE LIBRARY</td>
</tr>
<tr>
<td>Northcott Drive</td>
</tr>
<tr>
<td>Campbell, A.C.T. 2600 AUSTRALIA</td>
</tr>
<tr>
<td>ETSE TELECOMUNICACION</td>
</tr>
<tr>
<td>Biblioteca, Campus Lagoas</td>
</tr>
<tr>
<td>Vigo, 36200 SPAIN</td>
</tr>
<tr>
<td>NATL. CTR. FOR HIGH-PERFORMANCE COMPUTING LIB.</td>
</tr>
<tr>
<td>PO Box 117-00930</td>
</tr>
<tr>
<td>Taipei City, Taiwan (ROC) 10699</td>
</tr>
<tr>
<td>BEIJING BOOK COMPANY, INC</td>
</tr>
<tr>
<td>701 E Lindon Ave.</td>
</tr>
<tr>
<td>Linden, NJ 07036-2495</td>
</tr>
<tr>
<td>FGAN-FHR</td>
</tr>
<tr>
<td>Neuenahrerstrasse 20</td>
</tr>
<tr>
<td>Wachtberg, Germany 53343</td>
</tr>
<tr>
<td>NATL. GROUND INTELL. CENTER</td>
</tr>
<tr>
<td>2055 Boulders Road</td>
</tr>
<tr>
<td>Charlottesville, VA 22911-8318</td>
</tr>
<tr>
<td>BRITISH LIBRARY</td>
</tr>
<tr>
<td>Boston SPA, Wetherby</td>
</tr>
<tr>
<td>West Yorkshire, UK LS23 7BQ</td>
</tr>
<tr>
<td>FLORIDA INTERNATIONAL UNIV.</td>
</tr>
<tr>
<td>ECE Dept./EAS-3983</td>
</tr>
<tr>
<td>10555 W. Flagler St</td>
</tr>
<tr>
<td>Miami, FL 33174</td>
</tr>
<tr>
<td>NAVAL POSTGRADUATE SCHOOL</td>
</tr>
<tr>
<td>Attn:J. Rozdal/411 Dyer Rd./ Rm 111</td>
</tr>
<tr>
<td>Monterey, CA 93943-5101</td>
</tr>
<tr>
<td>DARMSTADT U. OF TECHNOLOGY</td>
</tr>
<tr>
<td>Schlossgartenstrasse 8</td>
</tr>
<tr>
<td>Darmstadt, Hessen</td>
</tr>
<tr>
<td>GERMANY D-64289</td>
</tr>
<tr>
<td>GEORGIA TECH LIBRARY</td>
</tr>
<tr>
<td>225 North Avenue, NW</td>
</tr>
<tr>
<td>Atlanta, GA 30332-0001</td>
</tr>
<tr>
<td>NAVAL RESEARCH LABORATORY</td>
</tr>
<tr>
<td>C. Office, 4555 Overlook Avenue, SW</td>
</tr>
<tr>
<td>Washington, DC 20375</td>
</tr>
<tr>
<td>DARTMOUTH COLL-FELDBERG LIB</td>
</tr>
<tr>
<td>6193 Murdough Center</td>
</tr>
<tr>
<td>Hanover, NH 03755-3560</td>
</tr>
<tr>
<td>HRL LABS, RESEARCH LIBRARY</td>
</tr>
<tr>
<td>3011 Malibu Canyon</td>
</tr>
<tr>
<td>Malibu, CA 90265</td>
</tr>
<tr>
<td>OHIO STATE UNIVERSITY</td>
</tr>
<tr>
<td>1320 Kinnear Road</td>
</tr>
<tr>
<td>Columbus, OH 43212</td>
</tr>
<tr>
<td>DEFENCE RESEARCH ESTAB. LIB.</td>
</tr>
<tr>
<td>3701 Carling Avenue</td>
</tr>
<tr>
<td>Ottowa, ON, K1A 0Z4 CANADA</td>
</tr>
<tr>
<td>IEE INSPEC/Acquisitions Section</td>
</tr>
<tr>
<td>Michael Faraday House</td>
</tr>
<tr>
<td>6 Hills Way</td>
</tr>
<tr>
<td>Stevenage, Herts UK SG1 2AY</td>
</tr>
<tr>
<td>OVEIDO LIBRARY</td>
</tr>
<tr>
<td>PO BOX 830679</td>
</tr>
<tr>
<td>Birmingham, AL 35283</td>
</tr>
<tr>
<td>DLR-STANDORBTIBLIOTEK</td>
</tr>
<tr>
<td>Muenchnerstrasse 20</td>
</tr>
<tr>
<td>Wessling, Germany 82234</td>
</tr>
<tr>
<td>IND CANTABRIA</td>
</tr>
<tr>
<td>PO Box 830470</td>
</tr>
<tr>
<td>Birmingham, AL 35283</td>
</tr>
<tr>
<td>PAIKNAM ACAD. INFO CTR LIB.</td>
</tr>
<tr>
<td>Hanyang U/17 Haengdang-Dong</td>
</tr>
<tr>
<td>Seongdong-ki, Seoul, S Korea 133-791</td>
</tr>
<tr>
<td>DPS/LIBRARY (EABV)</td>
</tr>
<tr>
<td>Alion Science &amp; Technology</td>
</tr>
<tr>
<td>185 Admiral Cochrane Drive</td>
</tr>
<tr>
<td>Annapolis, MD 214017307</td>
</tr>
<tr>
<td>INSTITUTE FOR SCIENTIFIC INFO.</td>
</tr>
<tr>
<td>Publication Processing Dept.</td>
</tr>
<tr>
<td>3501 Market St.</td>
</tr>
<tr>
<td>Philadelphia, PA 19104-3302</td>
</tr>
<tr>
<td>PENN STATE UNIVERSITY</td>
</tr>
<tr>
<td>126 Paterno Library</td>
</tr>
<tr>
<td>University Park, PA 16802-1808</td>
</tr>
<tr>
<td>DSTO-DSTORL EDINBURGH</td>
</tr>
<tr>
<td>Jets AU/33851-99, PO Box 562</td>
</tr>
<tr>
<td>Milsons Point, NSW</td>
</tr>
<tr>
<td>AUSTRALIA 1565</td>
</tr>
<tr>
<td>LIBRARY of CONGRESS</td>
</tr>
<tr>
<td>Reg. Of Copyrights</td>
</tr>
<tr>
<td>Attn: 40T Deposits</td>
</tr>
<tr>
<td>Washington DC, 20559</td>
</tr>
<tr>
<td>PHILIPS RESEARCH LAB</td>
</tr>
<tr>
<td>Cross Oak Lane, Stella Cox, Salfords</td>
</tr>
<tr>
<td>Red Hill, UK RH1 5HA</td>
</tr>
<tr>
<td>DTIC-OCP/LIBRARY</td>
</tr>
<tr>
<td>8725 John J. Kingman Rd. Ste 0944</td>
</tr>
<tr>
<td>Ft. Belvoir, VA 22060-6218</td>
</tr>
<tr>
<td>LINDA HALL LIBRARY</td>
</tr>
<tr>
<td>5109 Cherry Street</td>
</tr>
<tr>
<td>Kansas City, MO 64110-2498</td>
</tr>
<tr>
<td>RENTON TECH LIBRARY/BOEING</td>
</tr>
<tr>
<td>PO BOX 3707</td>
</tr>
<tr>
<td>SEATTLE, WA 98124-2207</td>
</tr>
<tr>
<td>ELLEDIEMME SRL</td>
</tr>
<tr>
<td>Via Baccina 30</td>
</tr>
<tr>
<td>Roma, Italy 00184</td>
</tr>
<tr>
<td>MISSISSIPPI STATE UNIV LIBRARY</td>
</tr>
<tr>
<td>PO Box 9570</td>
</tr>
<tr>
<td>Mississippi State, MS 39762</td>
</tr>
<tr>
<td>SOUTHWEST RESEARCH INST.</td>
</tr>
<tr>
<td>6220 Culebra Road</td>
</tr>
<tr>
<td>San Antonio, TX 78238</td>
</tr>
<tr>
<td>ELSEVIER</td>
</tr>
<tr>
<td>Bibliographic Databases</td>
</tr>
<tr>
<td>PO Box 2227</td>
</tr>
<tr>
<td>Amsterdam, Netherlands 1000 CE</td>
</tr>
<tr>
<td>MIT LINCOLN LABORATORY</td>
</tr>
<tr>
<td>Periodicals Library</td>
</tr>
<tr>
<td>244 Wood Street</td>
</tr>
<tr>
<td>Lexington, MA 02420</td>
</tr>
<tr>
<td>SWEDISH DEFENCE RES. AGENCY (FOI)</td>
</tr>
<tr>
<td>PO Box 1165</td>
</tr>
<tr>
<td>Linkoping, Sweden S-58111</td>
</tr>
<tr>
<td>ENGINEERING INFORMATION, INC</td>
</tr>
<tr>
<td>PO Box 543</td>
</tr>
<tr>
<td>Amsterdam, Netherlands 1000 Am</td>
</tr>
<tr>
<td>NA KANSAI KINOKUNNA CO.</td>
</tr>
<tr>
<td>Attn: M. MIYOSHI</td>
</tr>
<tr>
<td>PO Box 36 (NDLA KANSAI)</td>
</tr>
<tr>
<td>Hongo, Tokyo, JAPAN 113-8688</td>
</tr>
<tr>
<td>SWETS INFORMATION SERVICES</td>
</tr>
<tr>
<td>160 Ninth Avenue, Suite A</td>
</tr>
<tr>
<td>Runnemede, NJ 08078</td>
</tr>
</tbody>
</table>
ACES COPYRIGHT FORM

This form is intended for original, previously unpublished manuscripts submitted to ACES periodicals and conference publications. The signed form, appropriately completed, MUST ACCOMPANY any paper in order to be published by ACES. PLEASE READ REVERSE SIDE OF THIS FORM FOR FURTHER DETAILS.

TITLE OF PAPER: RETURN FORM TO:

AUTHORS(S) Dr. Atef Z. Elsherbeni
PUBLICATION TITLE/DATE: University of Mississippi

PART A - COPYRIGHT TRANSFER FORM

(The undersigned, desiring to publish the above paper in a publication of ACES, hereby transfer their copyrights in the above paper to The Applied Computational Electromagnetics Society (ACES). The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper or otherwise has the power and authority to make and execute this assignment.

Returned Rights: In return for these rights, ACES hereby grants to the above authors, and the employers for whom the work was performed, royalty-free permission to:

1. Retain all proprietary rights other than copyright, such as patent rights.
2. Reuse all or portions of the above paper in other works.
3. Reproduce, or have reproduced, the above paper for the author’s personal use or for internal company use provided that (a) the source and ACES copyright are indicated, (b) the copies are not used in a way that implies ACES endorsement of a product or service of an employer, and (c) the copies per se are not offered for sale.
4. Make limited distribution of all or portions of the above paper prior to publication.
5. In the case of work performed under U.S. Government contract, ACES grants the U.S. Government royalty-free permission to reproduce all or portions of the above paper, and to authorize others to do so, for U.S. Government purposes only.

ACES Obligations: In exercising its rights under copyright, ACES will make all reasonable efforts to act in the interests of the authors and employers as well as in its own interest. In particular, ACES requires that:

1. The consent of the first-named author be sought as a condition in granting re-publication permission to others.
2. The consent of the undersigned employer be obtained as a condition in granting permission to others to reuse all or portions of the paper for promotion or marketing purposes.

In the event the above paper is not accepted and published by ACES or is withdrawn by the author(s) before acceptance by ACES, this agreement becomes null and void.

AUTHORIZED SIGNATURE TITLE (IF NOT AUTHOR)

EMPLOYER FOR WHOM WORK WAS PERFORMED DATE FORM SIGNED

Part B - U.S. GOVERNMENT EMPLOYEE CERTIFICATION

(NOTE: if your work was performed under Government contract but you are not a Government employee, sign transfer form above and see item 5 under Returned Rights).

This certifies that all authors of the above paper are employees of the U.S. Government and performed this work as part of their employment and that the paper is therefor not subject to U.S. copyright protection.

AUTHORIZED SIGNATURE TITLE (IF NOT AUTHOR)

NAME OF GOVERNMENT ORGANIZATION DATE FORM SIGNED
PART C - CROWN COPYRIGHT

(NOTE: ACES recognizes and will honor Crown Copyright as it does U.S. Copyright. It is understood that, in asserting Crown Copyright, ACES in no way diminishes its rights as publisher. Sign only if ALL authors are subject to Crown Copyright).

This certifies that all authors of the above Paper are subject to Crown Copyright. (Appropriate documentation and instructions regarding form of Crown Copyright notice may be attached).

<table>
<thead>
<tr>
<th>AUTHORIZED SIGNATURE</th>
<th>TITLE OF SIGNEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME OF GOVERNMENT BRANCH</td>
<td>DATE FORM SIGNED</td>
</tr>
</tbody>
</table>

Information to Authors

ACES POLICY

ACES distributes its technical publications throughout the world, and it may be necessary to translate and abstract its publications, and articles contained therein, for inclusion in various compendiums and similar publications, etc. When an article is submitted for publication by ACES, acceptance of the article implies that ACES has the rights to do all of the things it normally does with such an article.

In connection with its publishing activities, it is the policy of ACES to own the copyrights in its technical publications, and to the contributions contained therein, in order to protect the interests of ACES, its authors and their employers, and at the same time to facilitate the appropriate re-use of this material by others.

The new United States copyright law requires that the transfer of copyrights in each contribution from the author to ACES be confirmed in writing. It is therefore necessary that you execute either Part A-Copyright Transfer Form or Part B-U.S. Government Employee Certification or Part C-Crown Copyright on this sheet and return it to the Managing Editor (or person who supplied this sheet) as promptly as possible.

CLEARANCE OF PAPERS

ACES must of necessity assume that materials presented at its meetings or submitted to its publications is properly available for general dissemination to the audiences these activities are organized to serve. It is the responsibility of the authors, not ACES, to determine whether disclosure of their material requires the prior consent of other parties and if so, to obtain it. Furthermore, ACES must assume that, if an author uses within his/her article previously published and/or copyrighted material that permission has been obtained for such use and that any required credit lines, copyright notices, etc. are duly noted.

AUTHOR/COMPANY RIGHTS

If you are employed and you prepared your paper as a part of your job, the rights to your paper initially rest with your employer. In that case, when you sign the copyright form, we assume you are authorized to do so by your employer and that your employer has consented to all of the terms and conditions of this form. If not, it should be signed by someone so authorized.

NOTE RE RETURNED RIGHTS: Just as ACES now requires a signed copyright transfer form in order to do “business as usual”, it is the intent of this form to return rights to the author and employer so that they too may do “business as usual”. If further clarification is required, please contact: The Managing Editor, R. W. Adler, Naval Postgraduate School, Code EC/AB, Monterey, CA, 93943, USA (408)656-2352.

Please note that, although authors are permitted to re-use all or portions of their ACES copyrighted material in other works, this does not include granting third party requests for reprinting, republishing, or other types of re-use.

JOINT AUTHORSHIP

For jointly authored papers, only one signature is required, but we assume all authors have been advised and have consented to the terms of this form.

U.S. GOVERNMENT EMPLOYEES

Authors who are U.S. Government employees are not required to sign the Copyright Transfer Form (Part A), but any co-authors outside the Government are.

Part B of the form is to be used instead of Part A only if all authors are U.S. Government employees and prepared the paper as part of their job.

NOTE RE GOVERNMENT CONTRACT WORK: Authors whose work was performed under a U.S. Government contract but who are not Government employees are required so sign Part A-Copyright Transfer Form. However, item 5 of the form returns reproduction rights to the U. S. Government when required, even though ACES copyright policy is in effect with respect to the reuse of material by the general public.

January 2002
INFORMATION FOR AUTHORS

PUBLICATION CRITERIA

Each paper is required to manifest some relation to applied computational electromagnetics. Papers may address general issues in applied computational electromagnetics, or they may focus on specific applications, techniques, codes, or computational issues. While the following list is not exhaustive, each paper will generally relate to at least one of these areas:

1. **Code validation.** This is done using internal checks or experimental, analytical or other computational data. Measured data of potential utility to code validation efforts will also be considered for publication.

2. **Code performance analysis.** This usually involves identification of numerical accuracy or other limitations, solution convergence, numerical and physical modeling error, and parameter tradeoffs. However, it is also permissible to address issues such as ease-of-use, set-up time, run time, special outputs, or other special features.

3. **Computational studies of basic physics.** This involves using a code, algorithm, or computational technique to simulate reality in such a way that better, or new physical insight or understanding, is achieved.

4. **New computational techniques,** or new applications for existing computational techniques or codes.

5. **“Tricks of the trade”** in selecting and applying codes and techniques.

6. **New codes, algorithms, code enhancement, and code fixes.** This category is self-explanatory, but includes significant changes to existing codes, such as applicability extensions, algorithm optimization, problem correction, limitation removal, or other performance improvement. **Note: Code (or algorithm) capability descriptions are not acceptable, unless they contain sufficient technical material to justify consideration.**

7. **Code input/output issues.** This normally involves innovations in input (such as input geometry standardization, automatic mesh generation, or computer-aided design) or in output (whether it be tabular, graphical, statistical, Fourier-transformed, or otherwise signal-processed). Material dealing with input/output database management, output interpretation, or other input/output issues will also be considered for publication.

8. **Computer hardware issues.** This is the category for analysis of hardware capabilities and limitations of various types of electromagnetics computational requirements. Vector and parallel computational techniques and implementation are of particular interest. Applications of interest include, but are not limited to, antennas (and their electromagnetic environments), networks, static fields, radar cross section, shielding, radiation hazards, biological effects, electromagnetic pulse (EMP), electromagnetic interference (EMI), electromagnetic compatibility (EMC), power transmission, charge transport, dielectric, magnetic and nonlinear materials, microwave components, MEMS technology, MMIC technology, remote sensing and geometrical and physical optics, radar and communications systems, fiber optics, plasmas, particle accelerators, generators and motors, electromagnetic wave propagation, non-destructive evaluation, eddy currents, and inverse scattering. Techniques of interest include frequency-domain and time-domain techniques, integral equation and differential equation techniques, diffraction theories, physical optics, moment methods, finite differences and finite element techniques, modal expansions, perturbation methods, and hybrid methods. This list is not exhaustive.

Where possible and appropriate, authors are required to provide statements of quantitative accuracy for measured and/or computed data. This issue is discussed in “Accuracy & Publication: Requiring, quantitative accuracy statements to accompany data,” by E. K. Miller, *ACES Newsletter*, Vol. 9, No. 3, pp. 23-29, 1994, ISBN 1056-9170.

EDITORIAL REVIEW

In order to ensure an appropriate level of quality control, papers are peer reviewed. They are reviewed both for technical correctness and for adherence to the listed guidelines regarding information content.

JOURNAL CAMERA-READY SUBMISSION DATES

- March issue: deadline 8 January
- July issue: deadline 20 May
- November issue: deadline 20 September

Uploading an acceptable camera-ready article after the deadlines will result in a delay in publishing this article.
STYLE FOR CAMERA-READY COPY

The ACES Journal is flexible, within reason, in regard to style. However, certain requirements are in effect:

1. The paper title should NOT be placed on a separate page. The title, author(s), abstract, and (space permitting) beginning of the paper itself should all be on the first page. The title, author(s), and author affiliations should be centered (center-justified) on the first page.

2. An abstract is REQUIRED. The abstract should be a brief summary of the work described in the paper. It should state the computer codes, computational techniques, and applications discussed in the paper (as applicable) and should otherwise be usable by technical abstracting and indexing services.

3. Either British English or American English spellings may be used, provided that each word is spelled consistently throughout the paper.

4. Any commonly-accepted format for referencing is permitted, provided that internal consistency of format is maintained. As a guideline for authors who have no other preference, we recommend that references be given by author(s) name and year in the body of the paper (with alphabetical listing of all references at the end of the paper). Titles of Journals, monographs, and similar publications should be in italic font or should be underlined. Titles of papers or articles should be in quotation marks.

5. Internal consistency shall also be maintained for other elements of style, such as equation numbering. As a guideline for authors who have no other preference, we suggest that equation numbers be placed in parentheses at the right column margin.

6. The intent and meaning of all text must be clear. For authors who are NOT masters of the English language, the ACES Editorial Staff will provide assistance with grammar (subject to clarity of intent and meaning).

7. Unused space should be minimized. Sections and subsections should not normally begin on a new page.

PAPER FORMAT

The preferred format for initial submission and camera-ready manuscripts is 12 point Times Roman font, single line spacing and double column format, similar to that used here, with top, bottom, left, and right 1 inch margins. Manuscripts should be prepared on standard 8.5x11 inch paper.

Only camera-ready electronic files are accepted for publication. The term “camera-ready” means that the material is neat, legible, and reproducible. Full details can be found on ACES site, Journal section.

ACES reserves the right to edit any uploaded material, however, this is not generally done. It is the author(s) responsibility to provide acceptable camera-ready pdf files. Incompatible or incomplete pdf files will not be processed, and authors will be requested to re-upload a revised acceptable version.

SUBMITTAL PROCEDURE

All submissions should be uploaded to ACES server through ACES web site (http://aces.ee.olemiss.edu) by using the upload button, journal section. Only pdf files are accepted for submission. The file size should not be larger than 5MB, otherwise permission from the Editor-in-Chief should be obtained first. The Editor-in-Chief will acknowledge the electronic submission after the upload process is successfully completed.

COPYRIGHTS AND RELEASES

Each primary author must sign a copyright form and obtain a release from his/her organization vesting the copyright with ACES. Copyright forms are available at ACES, web site (http://aces.ee.olemiss.edu). To shorten the review process time, the executed copyright form should be forwarded to the Editor-in-Chief immediately after the completion of the upload (electronic submission) process. Both the author and his/her organization are allowed to use the copyrighted material freely for their own private purposes.

Permission is granted to quote short passages and reproduce figures and tables from and ACES Journal issue provided the source is cited. Copies of ACES Journal articles may be made in accordance with usage permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. The reproduction of multiple copies and the use of articles or extracts for commercial purposes require the consent of the author and specific permission from ACES. Institutional members are allowed to copy any ACES Journal issue for their internal distribution only.

PUBLICATION CHARGES

ACES members are allowed 12 printed pages per paper without charge; non-members are allowed 8 printed pages per paper without charge. Mandatory page charges of $75 a page apply to all pages in excess of 12 for members or 8 for non-members. Voluntary page charges are requested for the free (12 or 8) pages, but are NOT mandatory or required for publication. A priority courtesy guideline, which favors members, applies to paper backlogs. Authors are entitled to 15 free reprints of their articles and must request these from the Managing Editor. Additional reprints are available to authors, and reprints available to non-authors, for a nominal fee.

ACES Journal is abstracted in INSPEC, in Engineering Index, and in DTIC.