Special Issue on Metamaterials EBG

Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas

G. Lovat, P. Burghignoli, F. Capolino and D.R. Jackson

Abstract: An investigation of planar metamaterial antennas consisting of grounded metamaterial substrates with low and/or high values of the electric permittivity and/or the magnetic permeability excited by dipole sources is presented. Their performances are characterised in terms of their capability to radiate high levels of power density in the broadside direction and to produce narrow pencil beams pointing at broadside with high directivity. To achieve a high directivity, a pair of weakly attenuated cylindrical leaky waves is excited along the metamaterial substrate; sufficient conditions are established for the existence of such leaky waves in terms of the values of the substrate permittivity and permeability. Approximate closed-form expressions are derived for the phase and attenuation constants of the leaky waves. Numerical results are given in order to illustrate the radiative features of this class of antennas and to validate the theoretical analysis.

1 Introduction

Periodic structures made of metallic and/or dielectric inclusions in a uniform host medium may be represented, in suitable frequency ranges, as homogeneous artificial materials (metamaterials) that show novel and interesting electromagnetic features. One of these features is the creation of highly directive radiation beams from simple sources such as dipoles or slots placed inside such materials, as was obtained in the pioneering work of Gupta [1], Poilasne et al. [2] and Enoch et al. [3] For a detailed historical overview of such enhanced-directivity antennas, we address the reader to the Introduction of Lovat et al. [4]. The structures considered here consist of a grounded metamaterial layer that may have either high or low values of permittivity and/or permeability, excited by either an electric or a magnetic dipole source. Such structures are different from those where a cavity is created under a partially reflective surface that is formed by high-permittivity dielectrics [5–7], metallic FSS layers [8, 9] or other periodic dielectric structures [10, 11]. Although different in structure, the metamaterial antennas considered in this work are similar in terms of the mechanism of radiation: in fact, all the antennas in [1–11] radiate a narrow beam because the feed excites slowly attenuating leaky waves, as demonstrated in the work of Lovat et al. [4] and Jackson and Oliner [6]

The theory behind a grounded slab made of such metamaterials is revisited here, assuming a homogeneous isotropic medium with parameters μ_r, ε_r excited by a horizontal electric or magnetic dipole placed inside the slab or on the ground plane, respectively. The goal is to design planar antennas with a simple single-dipole feed featuring enhanced broadside radiation and/or very high directivity at broadside. Metamaterials are not usually isotropic when practically implemented, but the general properties discussed in this paper for the isotropic case, assumed for simplicity, have also been found assuming specific anisotropic models.

In this contribution, we focus on a comparison among antennas based on different realisations of substrates with high/low values of permittivity and/or permeability. The possibility of achieving high levels of radiated power density at broadside is ascertained, in connection with the values of the constitutive parameters of the substrate and of the electric or magnetic type of the source. Conditions for achieving the excitation of a pair of TE$_z$ and TM$_z$ leaky modes (where z is the direction orthogonal to the air–slab interface) with small and equal values of the phase and attenuation constants are then derived, which is a requirement for the radiation of a highly directive pencil beam pointing at broadside with a circular cross-section [12]. The conclusions given in this paper provide guidelines for a more comprehensive investigation assuming a more realistic homogeneous anisotropic model, or even the still further realistic case of a metamaterial made of actual periodic inclusions. Their importance rely also on the fact that no other studies have been carried out so far on this topic, and that the example seen in the literature represents just one of the possible choices (a low-permittivity metamaterial) that can be adopted in order to realise a planar radiator with enhanced directivity or broadside radiation.

For convenience of the reader, the terminology adopted throughout the paper for describing the various considered metamaterial media is reported here.

- **MNZ** – μ_r near zero, that is, $|\mu_r| \ll 1$
- **ENZ** – ε_r near zero, that is, $|\varepsilon_r| \ll 1$
- **MENZ** – μ and epsilon near zero, that is, $|\mu_r| \ll 1$, and $|\varepsilon_r| \ll 1$

© The Institution of Engineering and Technology 2007

doi:10.1049/iet-map:20050353

Paper first received 15th December 2005 and in revised form 20th July 2006

G. Lovat and P. Burghignoli are with the Electronic Engineering Department, ‘La Sapienza’ University of Rome, Via Eudossiana 18, Roma 00184, Italy

F. Capolino is with the Information Engineering Department, University of Siena, Via Roma 56, Siena 53100, Italy

D.R. Jackson is with the Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005, USA

E-mail: capolino@ing.unisi.it

Accepted manuscript online 19th June 2007
when can easily be seen from (1) that, for both electric and magnetic dipole source location is $z = h_s$ or on the ground plane, respectively. The electric far field radiated by the electric dipole source at broadside can be found by means of a simple application of the reciprocity theorem [5]. This is done by letting a y-polarised incident plane wave, having an amplitude of $\sin^2(k h)$. Evaluating the electric field at the point x, we obtain,

$P_{0}(0) = \frac{k_0^2 \eta_0}{8 \pi^2} \frac{\eta_0^2 \sin^2(k h)}{\cos^2(k h) + \eta_0^2 \sin^2(k h)}$

for a unit-amplitude electric dipole moment and for a unit-amplitude magnetic dipole moment, respectively, where $k_0 = \sqrt{\mu_0 e_0}$, $\eta_0 = \sqrt{\mu_0 e_0}$, $k_1 = k_0 \sqrt{\mu_0 e_0}$ and $\eta_1 = \sqrt{\mu_0 e_0}$. The power density at broadside is investigated below assuming two cases: high- and low-impedance materials, since a large broadside power density requires one of these two cases.

Case 1: Materials with high intrinsic impedance. Considering metamaterial slabs with very high values of normalised intrinsic impedance, that is, with $\eta_1 \gg 1$, it can easily be seen from (1) that, for both electric and magnetic sources, the broadside power density is maximised when $h = n \lambda_1 / 2$ (where $\lambda_1 = \lambda_0 \sqrt{\mu_0 e_0}$ and $n = 1, 2, \ldots$). For an electric dipole, by letting $n = 1$ (which corresponds to the choice of the thinnest slab), the optimum source location is $h_s = h / 2$, for which (1a) gives

$P_{0}(0) = \frac{k_0^2 \eta_0}{8 \pi^2} \frac{\eta_0^2}{\eta_1^2}$

which can be made very large by increasing the normalised slab impedance η_1 either by using an ENZ and/or a EVL material. A power enhancement factor E_{P} can be introduced as the ratio $E_{P}(0) = P_{0}(0)/P_{M}(0)$ between the broadside power density radiated in the presence of the grounded slab $P_{0}(0)$ and that radiated in free space $P_{M}(0)$: the latter is equal to $P_{M}(0) = \frac{k_0^2 \eta_0}{32 \pi^2}$ W/steradian [13], so that in this case

$E_{P}(0) = \frac{4 \eta_1^2}{\eta_0^2}$

In contrast, for a magnetic dipole (whose broadside power density radiated in free space is equal to $P_{M}(0) = \frac{k_0^2}{32 \pi^2} \eta_1^2$ W/steradian), (1b) yields

$P_{M}(0) = \frac{k_0^2}{8 \pi^2 \eta_0^2}$

that is independent of η_1. Hence a fixed enhancement factor $E_{P,M} = P_{0}(0)/P_{M}(0) = 4$ is obtained, which is the same as that due to the ground plane alone, and therefore no power enhancement at broadside is obtained from the metamaterial. It can be concluded that, for high-impedance slabs, electric sources must be employed in order to enhance broadside radiation.

Case 2: Materials with low intrinsic impedance. Conversely, considering metamaterial slabs with very low values of intrinsic impedance, that is, with $\eta_1 \ll 1$, it can easily be seen from (1) that, for both electric and magnetic sources, the broadside power density is maximised when $h = (2n - 1) \lambda_1 / 4$ (where $n = 1, 2, \ldots$). For an electric source, by letting $n = 1$, the optimum source location is $h_s = h$, for which (1a) gives the broadside power density as

$P_{0}(0) = \frac{k_0^2 \eta_0}{8 \pi^2} \frac{\eta_0^2}{\eta_1^2}$

which is independent of η_1. In contrast, for a magnetic source, (1b) gives the broadside power density as

$P_{M}(0) = \frac{k_0^2}{8 \pi^2 \eta_0^2 \eta_1^2}$

which can be made very large by decreasing the normalised slab impedance η_1 either by using a MNZ and/or a EVL material. The relevant power enhancement factor is

$E_{P,M} = \frac{4}{\eta_1^2}$

It can be concluded that, for low-impedance slabs, magnetic sources must be employed in order to enhance broadside radiation.

3 Leaky waves and enhanced broadside directivity

As shown in the work of Ip and Jackson [12], the excitation on a planar structure of a pair of TE and TM cylindrical leaky waves that dominate the aperture field may produce a directive pencil-beam broadside radiation, that is, a beam pointing at broadside with equal beamwidths in the E and H planes. This will occur when each leaky wave has small and nearly equal values of the phase and attenuation constants (a requirement for a narrow pencil beam at broadside), and the wavenumbers and amplitudes of the two leaky waves are equal (this guarantees equal beamwidths in the principal planes). When the planar structure is excited by an actual source, the aperture field around the source is represented as the sum of surface waves and leaky waves (if any) and a term called the space wave, arising from the steepest-descent integration in the
wavenumber plane [13, Ch. 5]. In most of the cases that cor-
respond to a narrow-beam pattern, the aperture field is
-dominated by the leaky-wave contribution [4].

In what follows, sufficient conditions are derived for a
grounded metamaterial slab to support such a pair of
leaky waves, in terms of the physical parameters of
the slab and the operating frequency.

3.1 Determination of the directive broadside
radiation region in the \(\mu_r^{-\varepsilon_r} \) plane

The aim is to determine a region of the \(\mu_r^{-\varepsilon_r} \) plane in which
a pair of TE\(^1\) and TM\(^2\) leaky modes with equal and small
values of the phase and attenuation constants may propagate
at the same frequency on a grounded metamaterial slab of
thickness \(h \) and constitutive parameters \(\mu_r, \varepsilon_r \), so that
approximately \(\beta_{TM}^{1E} = \alpha_{TM}^{1E} \) and \(\beta_{TM}^{2E} = \alpha_{TM}^{2E} \). As will be
shown, the substrate parameters that give equality in the
TE\(^1\) case also give equality in the TM\(^2\) case, so that the
beam at broadside has equal E- and H-plane beamwidths.

The dispersion equations to be studied are [14, Sec. 11.5]

\[
\begin{align*}
\hat{k}_{z1} \cos(\hat{k}_0 \hat{h}_{k1}) + \mu_\varepsilon \hat{k}_{z0} \sin(\hat{k}_0 \hat{h}_{k1}) &= 0 \quad \text{(TE\(^1\))} \quad (8a) \\
\varepsilon_r \hat{k}_{z0} \cos(\hat{k}_0 \hat{h}_{k1}) + \mu_\varepsilon \hat{k}_{z1} \sin(\hat{k}_0 \hat{h}_{k1}) &= 0 \quad \text{(TM\(^2\))} \quad (8b)
\end{align*}
\]

where \(\hat{k}_{z0} \) and \(\hat{k}_{z1} \) are the vertical wavenumbers in air and
inside the slab, respectively, normalized with respect to the
free-space wavenumber \(k_0 \), these are related to the
radial modal propagation wavenumber \(k_r = \beta - j \alpha = \hat{k}_0 \hat{k}_r \)
through the relations \(k_{z0} = \sqrt{(1 - k_r^2)} \) and \(k_{z1} = \sqrt{(n_r^2 - k_r^2)} \),
which come from the Taylor expansions for the vertical wavenumbers, for small \(\delta \) and \(\delta/n_1 \). As shown below, the assumptions that \(|\delta|/k_0 \ll 1 \) and
\(|\delta/n_1| \ll 1 \) lead to a self-consistent solution of the
transcendental equation in (8a) for the wavenumber \(\hat{k}_{z0} \) for
which \(\delta \) is approximately real and small, and hence \(\beta_{TM}^{1E} = \alpha_{TM}^{1E} \).
The same procedure for the TM\(^2\) leaky mode then
reveals that \(\beta_{TM}^{2E} = \alpha_{TM}^{2E} \) for precisely the same assumptions,
and furthermore that \(\beta_{TM}^{1E} = \alpha_{TM}^{1E} = \beta_{TM}^{2E} = \alpha_{TM}^{2E} = \hat{\alpha} \).
This leads to the conclusion that a suitable range of permittivity
and permeability values will result in a directive beam at
broadside that has nearly equal beamwidths in the E and
H planes. The allowed range of permittivity and permeability
values define what is called the directive (pencil-beam)
broadside radiation region (DBRR). This allowed range is derived below.

The beamwidths \(\Delta \theta_{0AB} \) in the principal E and H planes
can be expressed in terms of the attenuation constant as
\[\frac{\Delta \theta_{0AB}}{\Delta \theta_{0AB/AB}} \approx 2 \sqrt{2} \cdot 2 \delta \cdot 2 \hat{\alpha} \] \(\Delta \theta_{0AB/AB} \approx 2 \sqrt{2} \cdot 2 \delta \cdot 2 \hat{\alpha} \).

The peak directivity at broadside is inversely proportional to the product of the
beamwidths \(\Delta \theta_{0AB} \) in the principal E and H planes, according to the approximate formula in [15, Eq. 2.27a],
and thus we obtain

\[
D_{\max} \approx \frac{9.87}{\Delta \theta_{0AB/AB}} \approx \frac{1.23}{\delta^2} \quad (9)
\]

where the normalised attenuation constant \(\hat{\alpha} \) is found by solving (8).

Focusing on the TE\(^1\) dispersion equation (8a), by using
\(\hat{k}_r^{1E} = (1 - j) \delta \) and approximating \(\hat{k}_{z0} \) and \(\hat{k}_{z1} \) in (8a) to
first order in \(\delta^2 \), it follows from (8a) that

\[
\left(n_r + j \frac{\delta^2}{n_r^2}\right) \cos(\hat{k}_0 \hat{h}_{k1}) \left[1 + j \frac{\delta^2}{n_r^2}\right] + j \mu_\varepsilon (1 + j \delta^2) \sin(\hat{k}_0 \hat{h}_{k1}) \left[1 + j \frac{\delta^2}{n_r^2}\right] = 0 \quad (10)
\]

Consider now the particular cases illustrated in Section 2 for
which a broadside power enhancement can be obtained. (It is not always necessary to have a high or low value of slab
impedance in order to realise a directive beam, but the
discussion here will be limited to these two important cases.) In
Case 1 (high-impedance material), the operating frequency
\(f_{01} \) is chosen so that \(k_0 h_0 = \pi \) or equivalently \(h = \lambda_0/(2n_1) \).
Using this and keeping terms to order \(\delta^2 \), the TE\(^1\) dispersion
relation (10) reduces to

\[
\left(n_r + j \frac{\delta^2}{n_r^2}\right) - \mu_\varepsilon (1 + j \delta^2) \left[1 + j \frac{\delta^2}{n_r^2}\right] = 0 \quad (11)
\]

The solution of (11) is

\[
\delta^2 = \frac{\left(2/\pi\right) \mu_\varepsilon^{3/2} e_r^{1/2}}{1 - j\left(2/\pi\right) \mu_\varepsilon^{3/2} e_r^{1/2}} \approx \frac{2}{\pi \mu_\varepsilon^{3/2} e_r^{1/2}} \quad (12)
\]

where the last approximation is accurate provided that \(e_r/(m_r) \ll 1 \), or equivalently, \(\pi \eta_r \ll 1 \).

To be consistent with the initial hypothesis on \(\delta^2 \), it is required that

\[
\left|\delta^2\right| \ll 1 \quad \Leftrightarrow \quad \pi \frac{\mu_\varepsilon}{\varepsilon_r} \left(\frac{m_r}{\pi}\right)^2 \ll 1 \quad (13a)
\]

\[
\left|\delta^2\right| \ll 1 \quad \Leftrightarrow \quad \pi \frac{\mu_\varepsilon}{\varepsilon_r} \gg 1 \quad (13b)
\]

Note that the approximation made in (12) is accurate since
when we are assuming that (13b) is satisfied. Equations (13) thus
represent a sufficient condition to have \(\delta \) be approximately
real and very small, and hence \(\beta_{TM}^{1E} = \alpha_{TM}^{1E} = \delta \),
which implies having a narrow beam in the H plane. It is
clear that (13b) is automatically satisfied under the assumption
of a high-impedance material, which requires the use of
either an ENZ or a MVL slab. Equation (13a) then implies
that a high directivity is only possible for an ENZ slab.
When (13) hold, they yield the result

\[
\beta_{TM}^{1E} \bigg|_{f=f_{01}} = \alpha_{TM}^{1E} \bigg|_{f=f_{01}} \approx \frac{\sqrt{\pi \mu_\varepsilon}}{\varepsilon_r} \left(\frac{m_r}{\pi}\right)^2 = \frac{1}{\sqrt{\pi \eta_r}} \frac{n_r}{\sqrt{\pi \eta_r}} \quad (14)
\]

By means of the same analysis carried out for the TE\(^1\) case,
results may also be obtained for the TM\(^2\) case, starting from
(8b) (the details are omitted for brevity). In particular, the
same result expressed by (14) is also found for the TM\(^2\) case,
along with the same restrictions on the substrate
parameters that were found for the TE\(^1\) case (see (13)).
This implies that when the inequalities in (13) are satisfied
an equally narrow beamwidth is obtained in the E and H
planes, with a peak directivity (at broadside) that is
\(D_{\max} \approx 3.88 \eta_r/n_1^2 \approx 3.88/(\mu_\varepsilon e_r)^{1/2} \).

In Case 2 (low-impedance material), the operating frequency
\(f_{02} \) is chosen so that \(k_0 h_0 = \pi/2 \), or equivalently \(h = \lambda_0/(4n_1) \).
Starting again from (10) for the TE\(^1\) case and
reasoning as for the high-impedance case, the result is

\[
\delta^2 = \frac{\left(2/\pi\right) \mu_\varepsilon^{3/2} e_r^{1/2}}{1 - j\left(2/\pi\right) \mu_\varepsilon^{3/2} e_r^{1/2}} \approx \frac{2}{\pi \mu_\varepsilon^{3/2} e_r^{1/2}} \quad (15)
\]
where the last approximation is accurate provided that $(2/\pi)\mu_0^{1/2}e_i^{1/2} \ll 1$. Again, to be consistent with the initial hypotheses on $|\delta|$, it is required that

\[
|\delta| \ll 1 \iff \frac{2}{2\pi}\mu_0 \frac{1}{\epsilon_i} \ll 1 \quad (16a)
\]

\[
|\frac{\delta}{\nu_2}| \ll 1 \iff \frac{2}{2\pi} \frac{\mu_0}{\epsilon_i} \ll 1 \quad (16b)
\]

Note that the approximation made in (15) is accurate since we are assuming that (16a) is satisfied. Equation (16b) is automatically satisfied under the assumption of a low-impedance material, which requires the use of either an MNZ or an EVL slab. Equation (16a) implies that a high directivity can only be achieved by using an MNZ slab. When (16) hold, they yield

\[
\hat{\beta}_{TE}^{TM} = \hat{\alpha}_{TE}^{TM} = \hat{\beta}_{TM}^{TM} = \hat{\alpha}_{TM}^{TM}
\]

(17)

Omitting the details once again, the same results and restrictions as shown in (16) and (17) are obtained for the TM case. This implies a symmetric pencil beam at broadside, as for Case 1, with a directivity $D_{max} \approx 1.94/(\nu_2^2 n_1^2) = 1.94/(\mu_0 e_i)^{1/2}$. It should be noted that, for dual values of μ_0 and ϵ_i, employing MNZ media allows to use thinner slabs with respect to ENZ media, although, by comparing (14) and (17), in the former case the attenuation constant is larger (hence the beam is less directive) by a factor $\sqrt{2}$. It is also worth noting that the possible use of high-index (EVL or MVL) media reduces considerably the normalised thickness of the slab h/λ_0.

The results of the previous analysis are reported in Table 1. By somewhat arbitrarily assuming the values 0.1 and 10 as upper and lower limits for values much smaller or much higher than 1, respectively, conditions (13) and (16) for having very small $\hat{\beta}_{TE}^{TM} = \hat{\alpha}_{TE}^{TM} = \hat{\beta}_{TM}^{TM} = \hat{\alpha}_{TM}^{TM}$ can be written as

\[
\begin{align*}
\mu_0 &\leq \frac{\pi^2}{100e_i} (f = f_1) \\
\mu_0 &\geq \frac{\pi^2}{100e_i} (f = f_2)
\end{align*}
\]

(18)

\[
\begin{align*}
\epsilon_i &\leq \frac{\pi^2}{400\epsilon_0} (f = f_1) \\
\epsilon_i &\leq \frac{\pi^2}{400\epsilon_0} (f = f_2)
\end{align*}
\]

Taken together, these set of inequalities determine the region of the μ_0, ϵ_i plane that is the DBRR. A sketch of such a region is reported in Fig. 2 (the shaded region) on a bi-logarithmic scale together with the high- and low-index regions, and the high- and low-impedance regions (defined in the figure somewhat arbitrarily as $\epsilon_i \geq 10$ and $\epsilon_i \leq 0.1$, and $\mu_0 \geq 10$ and $\mu_0 \leq 0.1$, respectively). Note that the boundaries of the DBRR are, however, only approximate because of the somewhat arbitrary limits adopted in connection with (18). Furthermore, because of the definitions adopted for high/low impedance in Fig. 2, the DBRR region in Fig. 2 extends beyond the defined limits of the high-impedance region (due to the factor of π in (13b) and $2/\pi$ in (16b)). The DBRR region gives the region of high directivity at broadside. If a particular slab material lies within the DBRR, then a directive beam may be obtained. It is observed that neither the value of the normalised impedance η_i nor the value of the normalised index n_i alone determine whether the slab material lies inside the DBRR, but both of them. The power density radiated at broadside can be maximised by using either a horizontal electric dipole or a horizontal magnetic dipole, depending on whether the point lies above or below the central band of the DBRR region.

As already noted in Section 1, these results provide guidelines useful for investigating more complicated and realistic models that would take into account the anisotropy and possibly also the non-linearity or the spatial dispersion of the medium. Examples of such media presenting very high and/or very low values of the constitutive parameters are ferroelectric thin films (very large permittivities) [16], ferrimagnetic layers (very large or very low permeabilities, depending on the operating frequency) and plasma layers (very low positive or very large negative permeabilities). Among the artificial materials, other examples are provided by wire media (very low positive or very large negative permittivities) [17], metaferrites (very low positive or very large permeabilities) [18] and other structures obtained by suitably combining the above-mentioned materials.

3.2 Numerical examples

To validate the above analysis, in this section we show dispersion and radiation features of grounded metamaterial...
slabs with different geometrical and ideal physical parameters (permittivity and permeability) inside the DBRR.

In Fig. 3, the normalised phase and attenuation constants (\(\beta/k_0\) and \(\alpha/k_0\)) together with the broadside enhancement factor \(E_{P,PJ}\) are reported as functions of the normalised slab thickness \(h/\lambda_1\) for a grounded ENZ slab excited by an electric dipole source placed in the middle of the slab. In Fig. 3a, the case of a non-dispersive metamaterial with \(\mu_r = 1\) and \(\varepsilon_r = 0.05060\) is considered: this corresponds to a nominally high impedance (\(\eta_1 = 4.45\)) and nominally low permittivity point inside the DBRR. In Fig. 3b, a dispersive metamaterial is used with a plasma-like permittivity \(\varepsilon_\infty(f) = 1 - f_\nu^2/f^2\) and plasma frequency \(f_\nu = 19.49\) GHz. In Fig. 3b, a fixed slab thickness \(h = 33.32\) mm has been used along with a variable frequency, so that \(h/\lambda_1\) is a function of frequency. The value of the plasma frequency has been chosen in order to have the same relative permittivity at the optimum frequency for which \(h/\lambda_1 = 0.5\). However, by varying the frequency (results omitted) it can be seen that the 3 dB frequency bandwidth for the broadside power density is very different, being equal to 14.7% in the non-dispersive case and 0.73% in the dispersive case. This aspect is discussed in more detail in the work of Lovat et al. [19].

In Fig. 4 a metamaterial that is both ENZ and MVL \((\varepsilon_r = 1.5 \times 10^{-3}\) and \(\mu_r = 1 \times 10^5\)) is considered, still excited by an electric dipole source placed in the middle of the slab. This corresponds to a very high-impedance \((\eta_1 = 8165)\) and very low-permittivity point inside the DBRR. Once again, it can be noted that for \(h/\lambda_1 = 0.5\) the leaky-wave phase and attenuation constants are approximately equal and the \(E_{P,PJ}\) factor has a maximum. As in the previous case, the approximate values of the leaky-wave propagation wavenumbers at the broadside-radiation point found from Table 1 \((\beta = \tilde{\alpha} \simeq 0.076)\) are in excellent agreement with the ones calculated numerically, and the maximum \(E_{P,PJ}\) factor is very large, being \(E_{P,PJ} \simeq 2.67 \times 10^9\).

In Fig. 5 a grounded MNZ \((\varepsilon_r = 1.2\) and \(\mu_r = 0.01)\) slab is considered. This case corresponds to a moderately low-impedance \((\eta_1 = 0.091)\) and moderately low-permeability point inside the DBRR. In this case, for \(h/\lambda_1 = 0.25\) the leaky-wave phase and attenuation constants are

Table 1 is \(E_{P,PJ} = 79.05\) (which coincides exactly with the maximum value obtained in the non-dispersive case). It can also be observed that the leaky-wave propagation wavenumbers and the broadside enhancement factor \(E_{P,PJ}\) are very similar in the non-dispersive and dispersive cases, since the value of the plasma frequency has been chosen in order to have the same relative permittivity at the optimum frequency for which \(h/\lambda_1 = 0.5\). However, by varying the frequency (results omitted) it can be seen that the 3 dB frequency bandwidth for the broadside power density is very different, being equal to 14.7% in the non-dispersive case and 0.73% in the dispersive case. This aspect is discussed in more detail in the work of Lovat et al. [19].

In Fig. 4 a metamaterial that is both ENZ and MVL \((\varepsilon_r = 1.5 \times 10^{-3}\) and \(\mu_r = 1 \times 10^5\)) is considered, still excited by an electric dipole source placed in the middle of the slab. This corresponds to a very high-impedance \((\eta_1 = 8165)\) and very low-permittivity point inside the DBRR. Once again, it can be noted that for \(h/\lambda_1 = 0.5\) the leaky-wave phase and attenuation constants are approximately equal and the \(E_{P,PJ}\) factor has a maximum. As in the previous case, the approximate values of the leaky-wave propagation wavenumbers at the broadside-radiation point found from Table 1 \((\beta = \tilde{\alpha} \simeq 0.076)\) are in excellent agreement with the ones calculated numerically, and the maximum \(E_{P,PJ}\) factor is very large, being \(E_{P,PJ} \simeq 2.67 \times 10^9\).

In Fig. 5 a grounded MNZ \((\varepsilon_r = 1.2\) and \(\mu_r = 0.01)\) slab is considered. This case corresponds to a moderately low-impedance \((\eta_1 = 0.091)\) and moderately low-permeability point inside the DBRR. In this case, for \(h/\lambda_1 = 0.25\) the leaky-wave phase and attenuation constants are
approximately equal, and exciting the slab with a magnetic dipole on the ground plane the \(E_{P,M} \) factor has a maximum, as expected; the relevant approximate values of the leaky-wave propagation wavenumbers found from Table 1 are \(\beta \approx \alpha \approx 0.026 \), whereas the maximum \(E_{P,M} \) factor is \(E_{P,M} \approx 480 \).

In Figs. 6, 7, and 8, radiation patterns in the principal planes are shown for the same structures of Figs. 3b, 4 and 5, respectively, in order to show the occurrence of directive broadside radiation. In all cases the excitation is an electric dipole placed in the middle of the slab. As noted in Table 1, the operating frequencies are \(f_H \) for Figs. 6 and 7, and \(f_L \) for Fig. 8 (the latter being an MNZ structure).

In Fig. 6, the slab thickness is fixed at \(h = 33.32 \text{ mm} \) and the operating frequency is \(f_H = 20 \text{ GHz} \). As expected, a highly directive pencil beam is radiated; in particular, the H- and E-plane radiation patterns are almost superimposed in the shown angular range, except for a narrow dip occurring in the E-plane pattern due to a destructive interference with radiation from an additional subdominant TM\(_z\) leaky mode.

In Fig. 7, the slab thickness is fixed at \(h = 1 \text{ mm} \) and the operating frequency is \(f_H = 12.24 \text{ GHz} \) \((h/\lambda_1 = 0.5) \). Again, a highly directive pencil beam with equal beam-widths in the principal planes can be observed. In this case no dip is present in the E plane since, for the choice of the slab parameters, the contribution of the additional TM\(_z\) leaky mode is completely negligible.

In Fig. 8, the slab thickness is fixed at \(h = 75 \text{ mm} \) and the operating frequency is \(f = f_L = 9.122 \text{ GHz} \) \((h/\lambda_1 = 0.25) \). The disagreement between the E- and H-plane patterns outside of the peak region is larger in this case. However, this can be explained by keeping in mind that the structure is excited at the frequency \(f_L \) by an electric dipole, so that no power enhancement is produced, according to the explanation in Section 2. Although weakly attenuated leaky waves are still excited by the source along the surface of the substrate, the direct non-modal radiation from the source (i.e. the space wave \([13, \text{ Ch. 5}]\)) in the E plane is not negligible, and it radiates an appreciable broad beam. Near broadside the patterns are still dominated by the large equivalent-aperture field distribution due to the leaky waves (TE\(_z\) and TM\(_z\)). Away from broadside, a dip in the E-plane pattern is also present due to the destructive interference between the space-wave and the leaky-wave contributions to the far field. To recover the same situation of Fig. 7 (where the total field is very much dominated by the leaky-wave field alone), a magnetic dipole on the ground plane is used to excite the antenna and the corresponding radiation pattern is reported in Fig. 9, where the patterns in the principal planes are superimposed and the level of the radiated power density is greatly enhanced, as expected. The directivity of the cases in Figs. 8 and 9 is comparable, but the power density at broadside in Fig. 9 is much higher than that in Fig. 8.

Finally, in Fig. 10 we consider the case of a structure designed to have a broadside power enhancement (according to (2)) whose constitutive parameters lie outside the DBRR of Fig. 2. As an example, the parameters are \(\epsilon_r = 2, \mu_r = 200 \) and \(h = 0.3750 \text{ mm} \), and the excitation
5 Conclusion

Grounded metamaterial slabs have been studied with the aim of designing planar antennas with enhanced broadside radiation and/or high broadside directivity. Ideal isotropic and homogeneous media have been assumed, examining various combinations of high/low permittivity and permeability. Conditions were derived for maximising the power density radiated at broadside by simple electric or magnetic dipole sources. The optimum slab thickness is then a half wavelength or a quarter wavelength, respectively. A class of configurations capable of producing narrow omnidirectional beams pointing at broadside was then identified by requiring the presence of a pair of TE and TM weakly attenuated leaky waves with the same values of the phase and attenuation constants. This allows for a range for the substrate constitutive parameters to be defined that gives rise to directive broadside radiation. The main results from this analysis are summarised in Fig. 2 and Table 1, which show the ranges of relative permittivity and permeability necessary to give a highly directive pattern when using a planar metamaterial substrate, under the assumption that the slab intrinsic impedance is either high or low. (It may be possible to obtain high directivity using impedances that are neither high nor low, but this was not explored here.)

Interestingly, high directivity can be obtained using a slab material that has a low, moderate or high value of refractive index, if the combination of permittivity and permeability is chosen properly. Note that previous high-directivity metamaterial antennas used low-index metamaterials [1, 3, 4].

6 Acknowledgment

The support of the EU-funded project METAMORPHOSE (FP6/NMP3-CT-2004-500252) is gratefully acknowledged.

7 References